Relationship Between the Goldberg Spectrum and the B-Fredholm Spectra
DOI:
https://doi.org/10.5644/SJM.13.1.06Keywords:
B-Fredholm operators, Quasi-Fredholm operators, Essential qausi-Fredholm spectrum, B-Fredholm spectrum, Transport operatorAbstract
A classical result of J. Ph. Labrousse (Rev. Roumaine Math. Pures Appl. 25, 1391-1394, 1980) concerning the symmetric difference between the essential quasi-Fredholm spectrum and the Goldberg spectrum of closed operators in Hilbert spaces is extended to the case of B-Fredholm spectra. The obtained results are used to describe the essential spectrum and some B-Fredholm spectra of some transport operators.
Downloads
References
M. Benharrat and B. Messirdi, On the generalized Kato spectrum, Serdica Math., J., 37 (2011), 283--294.
M. Benharrat and B. Messirdi, Essential spectrum: A Brief survey of concepts and applications, Azerb. J. Math., 2 (1) (2012), 35--61.
M. Benharrat and B. Messirdi, Relationship between the Kato essential spectrum and a variant of essential spectrum, Gen. Math., 20 (4) (2012), 71--88.
M. Benharrat and B. Messirdi, Relationship between the essential quasi-Fredholm spectrum and the closed-range spectrum, An. Univ. Oradea Fasc. Mat., XXI (1) (2014), 5--12.
M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Oper. Theory, 34 (1999), 244-249.
M. Berkani, Restriction of an operator to the range of its powers. Studia Math., 140 (2000), 163-175.
M. Berkani and M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Math., 148 (2001), 251--257.
M. Berkani and N. Castro-Ganzález, Unbounded B-Fredholm operators on Hilbert spaces, Proc. Edinb. Math. Soc., 51 (2008), 285--296.
M. Berkani and D. Medkova, A note on the index of B-Fredholm operators, Math. Bohem., 129 (2) (2004), 177--180.
S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New-York,(1966).
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, (1966).
J. J. Koliha, M. Mbekhta, V. Müller and P. W. Poon, Corrigendum and addendum: On the axiomatic theory of the spectrum II, Studia Math., 1130 (1998), 193--198.
V. Kordula, The Apostol essential spectrum and finite-dimensional perturbations, Proc. Roy. Irish. Aca., 96A (1) (1996), 105--109.
V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc. 124 (1996), 3055-3061.
J-P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Thése de Doctorat, Univ. de Nice (1979).
J-P. Labrousse, Relation entre deux définitions possible de spectre essentiel d'un opérateur, Rev. Roum. Math. Pures Appl., XXV, (9) (1980), 1391--1394.
K. Latrach, Some remarks on the essential spectrum of transport operators with abstract boundary conditions, J. Math. Phys., 35 (1994), 6199-6212.
M. Mokhtar-Kharroubi, Time asymptotic behaviour and compactness in neutron transport theory, Euro. J. Mech. B Fluids, 11 (1992), 39--68.