Common fixed point results of Das-Naik and Geraghty types in $\boldsymbol{\nu}$-generalized metric spaces

Authors

  • Zoran Kadelburg
  • Stojan Radenović

DOI:

https://doi.org/10.5644/SJM.13.1.07

Keywords:

v-generalized metric space, common fixed point, Das-Naik- type contraction, Geraghty-type contraction

Abstract

In this paper, common fixed point results in $\nu$-generalized metric spaces of Branciari are deduced under several types of contractive conditions.

 

Statistics

Abstract: 29  /   PDF: 15

 

References

M. Abtahi, Z. Kadelburg and S. Radenović, Fixed points of Ćirić-Matkowski-type contractions in $nu$-generalized metric spaces, Rev. Real Acad. Cienc. Exac., Fis. Nat., Ser. A, Mat., DOI:10.1007/s13398-016-0275-5.

B. Alamri, T. Suzuki and L. A. Khan, Caristi's fixed point theorem and Subrahmanyam's fixed point theorem in $nu$-generalized metric spaces, J. Function Spaces, 2015, Art. ID 709391 (2015), 6 pp.

H. Aydi, E. Karapinar, H. Lakzian, Fixed point results on a class of generalized metric spaces, Math. Sci., 6 Art. 46 (2012).

A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31--37.

Lj. B. Ćirić, A new fixed-point theorem for contractive mappings, Publ. Inst. Math. (N.S), 30 (44) (1981), 25--27.

K. M. Das and K. V. Naik, Common fixed point theorems for commuting maps on metric spaces, Proc. Amer. Math. Soc., 77 (1979), 369--373.

M. Geraghty, On contractive mappings}, Proc. Amer. Math. Soc., 40 (1973), 604--608.

Z. Kadelburg and S. Radenović, On generalized metric spaces: A survey, TWMS J. Pure Appl. Math., 5 (2014), 3--13.

Z. Kadelburg and S. Radenović, Fixed point results in generalized metric spaces without Hausdorff property, Math. Sci., 8 Art. 125 (2014).

W. A. Kirk and N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl., 2013 Art. 129 (2013).

W. A. Kirk and N. Shahzad, Corrections: Generalized metrics and Caristi's theorem, Fixed Point Theory Appl., 2014 Art.177 (2014).

B. Samet, Discussion on A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces' by A. Branciari, Publ. Math. Debrecen, 76 (2010), 493--494.

I. R. Sarma, J. M. Rao and S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl., 2 (2009), 180--182.

T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014, Art. ID 458098 (2014), 5 pp.

T. Suzuki, B. Alamri and L.A. Khan, Some notes on fixed point theorems in $nu$-generalized metric spaces, Bull. Kyushu Inst. Tech. Pure Appl. Math., 62 (2015), 15--23.

T. Suzuki, B. Alamri and M. Kikkawa, Only $3$-generalized metric spaces have a compatible symmetric topology, Open Math., 13 (2015), 510--517.

T. Suzuki, B. Alamri, M. Kikkawa, Edelstein's fixed point theorem in generalized metric spaces, J. Nonlinear Convex Anal., 16 (11) (2015), 2301--2309.

T. Suzuki and H. K. Pathak, Almost biased mappings and almost compatible mappings are equivalent under some conditions, J. Math. Anal. Appl., 368 (2010), 211--217.

M. Turinici, Functional contractions in local Branciari metric spaces, Romai J., 8 (2012), 189--199.

Downloads

Published

19.05.2017

How to Cite

Kadelburg, Z. ., & Radenović, S. . (2017). Common fixed point results of Das-Naik and Geraghty types in $\boldsymbol{\nu}$-generalized metric spaces. Sarajevo Journal of Mathematics, 13(1), 93–103. https://doi.org/10.5644/SJM.13.1.07

Issue

Section

Articles