Common fixed point results of Das-Naik and Geraghty types in $\boldsymbol{\nu}$-generalized metric spaces

Authors

  • Zoran Kadelburg
  • Stojan Radenović

DOI:

https://doi.org/10.5644/SJM.13.1.07

Keywords:

v-generalized metric space, common fixed point, Das-Naik- type contraction, Geraghty-type contraction

Abstract

In this paper, common fixed point results in $\nu$-generalized metric spaces of Branciari are deduced under several types of contractive conditions.

Downloads

Download data is not yet available.

References

M. Abtahi, Z. Kadelburg and S. Radenović, Fixed points of Ćirić-Matkowski-type contractions in $nu$-generalized metric spaces, Rev. Real Acad. Cienc. Exac., Fis. Nat., Ser. A, Mat., DOI:10.1007/s13398-016-0275-5.

B. Alamri, T. Suzuki and L. A. Khan, Caristi's fixed point theorem and Subrahmanyam's fixed point theorem in $nu$-generalized metric spaces, J. Function Spaces, 2015, Art. ID 709391 (2015), 6 pp.

H. Aydi, E. Karapinar, H. Lakzian, Fixed point results on a class of generalized metric spaces, Math. Sci., 6 Art. 46 (2012).

A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31--37.

Lj. B. Ćirić, A new fixed-point theorem for contractive mappings, Publ. Inst. Math. (N.S), 30 (44) (1981), 25--27.

K. M. Das and K. V. Naik, Common fixed point theorems for commuting maps on metric spaces, Proc. Amer. Math. Soc., 77 (1979), 369--373.

M. Geraghty, On contractive mappings}, Proc. Amer. Math. Soc., 40 (1973), 604--608.

Z. Kadelburg and S. Radenović, On generalized metric spaces: A survey, TWMS J. Pure Appl. Math., 5 (2014), 3--13.

Z. Kadelburg and S. Radenović, Fixed point results in generalized metric spaces without Hausdorff property, Math. Sci., 8 Art. 125 (2014).

W. A. Kirk and N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl., 2013 Art. 129 (2013).

W. A. Kirk and N. Shahzad, Corrections: Generalized metrics and Caristi's theorem, Fixed Point Theory Appl., 2014 Art.177 (2014).

B. Samet, Discussion on A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces' by A. Branciari, Publ. Math. Debrecen, 76 (2010), 493--494.

I. R. Sarma, J. M. Rao and S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl., 2 (2009), 180--182.

T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014, Art. ID 458098 (2014), 5 pp.

T. Suzuki, B. Alamri and L.A. Khan, Some notes on fixed point theorems in $nu$-generalized metric spaces, Bull. Kyushu Inst. Tech. Pure Appl. Math., 62 (2015), 15--23.

T. Suzuki, B. Alamri and M. Kikkawa, Only $3$-generalized metric spaces have a compatible symmetric topology, Open Math., 13 (2015), 510--517.

T. Suzuki, B. Alamri, M. Kikkawa, Edelstein's fixed point theorem in generalized metric spaces, J. Nonlinear Convex Anal., 16 (11) (2015), 2301--2309.

T. Suzuki and H. K. Pathak, Almost biased mappings and almost compatible mappings are equivalent under some conditions, J. Math. Anal. Appl., 368 (2010), 211--217.

M. Turinici, Functional contractions in local Branciari metric spaces, Romai J., 8 (2012), 189--199.

Downloads

Published

19.05.2017

How to Cite

Kadelburg, Z. ., & Radenović, S. . (2017). Common fixed point results of Das-Naik and Geraghty types in $\boldsymbol{\nu}$-generalized metric spaces. Sarajevo Journal of Mathematics, 13(1), 93–103. https://doi.org/10.5644/SJM.13.1.07

Issue

Section

Articles