$\boldsymbol{f}$-Biharmonic and Bi-$\boldsymbol{f}$-Harmonic Submanifolds of Product Spaces
DOI:
https://doi.org/10.5644/SJM.13.1.09Keywords:
f-biharmonic map, f-biharmonic submanifold, bi-f-harmonic map, bi-f-harmonic submanifold, product spaceAbstract
We consider $f$-biharmonic and bi-$f$-harmonic submanifolds of the product of two real space forms. We find the necessary
and sufficient conditions for a submanifold to be $f$-biharmonic and bi-$f$-harmonic in a product of two real space forms.
Downloads
References
N. Course, $f$-harmonic maps, Thesis, University of Warwick, 2004.
F. Dillen and D. Kowalczyk, Constant angle surfaces in product spaces, J. Geom. Phys., 62 (6) (2012), 1414--1432.
J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109--160.
G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7 (4) (1986), 389--402.
W-J. Lu, On $f$-bi-harmonic maps and bi-f-harmonic maps between Riemannian manifolds, Sci. China Math., 58 (2015), 1483--1498.
Y-L. Ou, On $f$-biharmonic maps and $f$-biharmonic submanifolds, Pacific J. Math., 271 (2) (2014), 461--477.
Y-L. Ou, $f$-harmonic morphisms between Riemannian manifolds, Chin. Ann. Math. Ser. B, 35 (2) (2014), 225--236.
S. Ouakkas, R. Nasri and M. Djaa, On the $f$-harmonic and $f$-biharmonic maps, JP J. Geom. Topol., 10 (1) (2010), 11--27.
J. Roth, A note on biharmonic submanifolds of product spaces, J. Geom., 104 (2) (2013), 375--381.
K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.
K. Zegga, A. M. Cherif and M. Djaa, On the }$f$-biharmonic maps and submanifolds, Kyungpook Math. J., 55 (1) (2015), 157--168.