The Existence of Li-Yorke Chaos in Certain Predator-Prey System of Difference Equations

Authors

  • Mirela Garić-Demirović University of Tuzla Department of Mathematics, Tuzla
  • Sabina Hrustić University of Tuzla Department of Mathematics, Tuzla
  • Samra Moranjkić University of Tuzla Department of Mathematics, Tuzla
  • Mehmed Nurkanović University of Tuzla Department of Mathematics, Tuzla
  • Zehra Nurkanović University of Tuzla Department of Mathematics, Tuzla

DOI:

https://doi.org/10.5644/SJM.18.01.04

Keywords:

difference equation, equilibrium, predator-prey system, snap-back repeller, Li-Yorke chaos

Abstract

This paper investigates an autonomous predator-prey system of difference equations with three equilibrium points and exhibits chaos in the sense of Li-Yorke in the positive equilibrium point. Numerical simulations are presented to illustrate our results.

Downloads

Download data is not yet available.

References

K. T. Alligood, T. Sauer, and J. A. Yorke, CHAOS: An Introduction to Dynamical Systems, Springer, 1996.

X.W. Chen, X.L. Fu, Z.J. Jing, Dynamics in a discrete-time predator-prey system with Allee effect, Acta Math. Appl. Sinica (Engl. Ser.) 29 (2013), 143-164. doi:10.1007/s10255-013-0207-5

Y. Gao, Complex dynamics in a two-dimensional noninvertible map, Chaos, Solitons and Fractals, 39 (2009), 1798-1810.

Y. Gao, W. Feng, and B. Liu, Complex Dynamics in A Financial Model, Pure and Applied Mathematics Quarterly, 8 (2012), no. 3, 589-608.

Y. Gao and B. Liu, Study on the dynamical behaviors of a two-dimensional discrete system, Nonlinear Analysis, 70 (2009), 4209-4216.

Y. Gao, B. Liu, and W. Feng, Bifurcations and Chaos in a Nonlinear Discrete Time Cournot Duopoly Game, Acta Mathematicae Applicatae Sinica, English Series, 30 (2014), no. 4, 951-964. DOI: 10.1007/s10255-014-0435-3

M. Garić-Demirović, S. Moranjkić, M. Nurkanović, and Z. Nurkanović, Stability, Neimark-Sacker Bifurcation, and Approximation of the Invariant Curve of Certain Homogeneous Second-Order Fractional Difference Equation, Discrete Dynamics in Nature and Society, vol. 2020 (2020), Article ID 6254013, 12 pages. https://doi.org/10.1155/2020/6254013

J. Kaplan and J. Yorke, Chaotic behavior of multidimensional difference equations. In Peitgen, H. O.; Walther, H. O. (eds.). Functional Differential Equations and the Approximation of Fixed Points. Lecture Notes in Mathematics. 730. Berlin: Springer. (1979) p. 204–227. ISBN 978-0-387-09518-9.

P. Kloeden and Z. Li, Li-Yorke chaos in higher dimensions: a review, Journal of Difference Equations and Applications, 12 (2006), no. 3-4, 247-269. https://doi.org/10.1080/10236190600574069

M. R. S. Kulenović and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman and Hall/CRC, Boca Raton, London, 2002.

C.P. Li and G.R. Chen, An Improved Version of the Marotto Theorem, Chaos, Solitons & Fractals, 18 (2003), 69-77. https://doi.org/10.1016/S0960-0779(02)00605-7

T.Y. Li and J. A. Yorke, Period Three Implies Chaos, The American Mathematical Monthly, 82 (1975), 985-992. https://doi.org/10.1080/00029890.1975.11994008

F. R. Marotto, Snap-Back Repellers Imply Chaos in $mathbb{R}^{n}$, Journal of Mathematical Analysis and Applications, 63 (1978), 199-223. https://doi.org/10.1016/0022-247X(78)90115-4

F.R. Marotto, Chaotic Behavior in the Hénon Mapping, Journal of Mathematical Analysis and Applications, 68 (1979), 187-194. https://doi.org/10.1007/BF01418128

F.R. Marotto, On Redefining a Snap-Back Repeller, Chaos, Solitons & Fractals, 25 (2005), 25-28. https://doi.org/10.1016/j.chaos.2004.10.003

Z. Nurkanović, M. Nurkanović, and M. Garić-Demirović, Stability and Neimark--Sacker Bifurcation of Certain Mixed Monotone Rational Second-Order Difference Equation, Qual. Theory Dyn. Syst.} 20 (2021), no. 3, 1-41. https://doi.org/10.1007/s12346-021-00515-4

M. Sandri, Numerical calculation of Lyapunov exponents, The Mathematica Journal, 6 (1996), 78-84.

U. Ufuktepe and S. Kapcak, Applications of Discrete Dynamical Systems with Mathematica, Conference: RIMS, 1909 (2014), 207-216.

M. Zhao, C. Li, and J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, Journal of Applied Analysis and Computation, 7 (2017), no.2, 478-500

M. Zhao, Z. Xuah and C. Li, Dynamics of a discrete-time predator-prey system, Advances in Difference Equations, 2016, 191 (2016). https://doi.org/10.1186/s13662-016-0903-6.

Downloads

Published

17.01.2024

How to Cite

Garić-Demirović, M. ., Hrustić, S. ., Moranjkić, S. ., Nurkanović, M. ., & Nurkanović, Z. . (2024). The Existence of Li-Yorke Chaos in Certain Predator-Prey System of Difference Equations. Sarajevo Journal of Mathematics, 18(1), 45–62. https://doi.org/10.5644/SJM.18.01.04

Issue

Section

Articles