Ulam Stability for First-Order Nonlinear Dynamic Equations

Authors

  • Martin Bohner Missouri S&T Department of Mathematics and Statistics Rolla, MO 65409-0020
  • Sanket Tikare Ramniranjan Jhunjhunwala College Department of Mathematics Mumbai, Maharashtra 400 086

DOI:

https://doi.org/10.5644/SJM.18.01.06

Keywords:

Dynamic equations, Ulam stability, Picard operator, Gronwall inequality

Abstract

The purpose of this paper is to investigate Ulam stability of firstorder nonlinear dynamic equations on time scales. Based on the method of the Picard operator and using dynamic inequalities, we obtain four types of stability. In addition, as applications of our main result, we obtain new Ulam stability results for other nonlinear dynamic equations. An example is also provided to illustrate our main result.

Downloads

Download data is not yet available.

References

Maryam A. Alghamdi, Mymonah Alharbi, Martin Bohner, and Alaa E. Hamza. Hyers--Ulam and Hyers--Ulam--Rassias stability of first-order nonlinear dynamic equations. Qual. Theory Dyn. Syst., 20(2):Paper No. 45, 14, 2021.

Maryam A. Alghamdi, Alaa Aljehani, Martin Bohner, and Alaa E. Hamza. Hyers--Ulam and Hyers--Ulam--Rassias stability of first-order linear dynamic equations. Publ. Inst. Math. (Beograd) (N.S.), 109(123):83--93, 2021.

Qusuay H. Alqifiary and Soon-Mo Jung. On the Hyers--Ulam stability of differential equations of second order. Abstr. Appl. Anal., Art. ID 483707, 8 pages, 2014.

Douglas R. Anderson and Masakazu Onitsuka. Hyers--Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstr. Math., 51(1):198--210, 2018.

Douglas R. Anderson and Masakazu Onitsuka. Hyers--Ulam stability for a discrete time scale with two step sizes. Appl. Math. Comput., 344/345:128--140, 2019.

Douglas R. Anderson and Masakazu Onitsuka. Hyers-Ulam stability for Cayley quantum equations and its application to {$h$}-difference equations. Mediterr. J. Math., 18(4):Paper No.168, 13, 2021.

Douglas R. Anderson and Masakazu Onitsuka. Hyers--Ulam stability for quantum equations. Aequationes Math., 95(2):201--214, 2021.

Douglas R. Anderson and Masakazu Onitsuka. Ulam stability for nonautonomous quantum equations. J. Inequal. Appl., Paper No. 161, 16 pages, 2021.

Szilárd András and Alpár Richárd Mészáros. Ulam--Hyers stability of dynamic equations on time scales via {P}icard operators. Appl. Math. Comput., 219(9):4853--4864, 2013.

Tosio Aoki. On the stability of the linear transformation in {B}anach spaces. J. Math. Soc. Japan, 2:64--66, 1950.

Alina Ramona Baias, Florina Blaga, and Dorian Popa. Best Ulam constant for a linear difference equation. Carpathian J. Math., 35(1):13--22, 2019.

Alina Ramona Baias and Dorian Popa. On Ulam stability of a linear difference equation in Banach spaces. Bull. Malays. Math. Sci. Soc., 43(2):1357--1371, 2020.

Alina Ramona Baias and Dorian Popa. On the best Ulam constant of a higher order linear difference equation. Bull. Sci. Math., 166:Paper No. 102928, 12, 2021.

Abdellatif Ben Makhlouf, Lassaad Mchiri, and Mohamed Rhaima. Ulam--Hyers--Rassias stability of stochastic functional differential equations via fixed point methods. J. Funct. Spaces, Art. ID 5544847, 7 pages, 2021.

Arzu Bilgin and Mustafa R. S. Kulenović. Global asymptotic stability for discrete single species population models. Discrete Dyn. Nat. Soc., Art. ID 5963594, 15 pages, 2017.

Martin Bohner and Allan Peterson. Dynamic equations on time scales. Birkhäuser Boston, Inc., Boston, MA, 2001. An introduction with applications.

Martin Bohner and Allan Peterson. Advances in dynamic equations on time scales. Birkhäuser Boston, Inc., Boston, MA, 2003.

Martin Bohner, Sanket Tikare, and Iguer Luis~Domini dos Santos. First-order nonlinear dynamic initial value problems. Int. J. Dyn. Syst. Differ. Equ., 11(3-4):241--254, 2021.

David G. Bourgin. Classes of transformations and bordering transformations. Bull. Amer. Math. Soc., 57:223--237, 1951.

Vahidin Hadžiabdić, Mustafa R. S. Kulenović, and Esmir Pilav. Global stability of a quadratic anti-competitive system of rational difference equations in the plane with Allee effects. J. Comput. Anal. Appl., 25(6):1132--1144, 2018.

Jinghao Huang, Soon-Mo Jung, and Yongjin Li. On Hyers--Ulam stability of nonlinear differential equations. Bull. Korean Math. Soc., 52(2):685--697, 2015.

Donald H. Hyers. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A., 27:222--224, 1941.

Sabina Jašarević Hrustić, Mustafa R. S. Kulenović, and Mehmed Nurkanović. Local dynamics and global stability of certain second-order rational difference equation with quadratic terms. Discrete Dyn. Nat. Soc., Art. ID 3716042, 14 pages, 2016.

Mustafa R. S. Kulenović, Samra Moranjkić, Mehmed Nurkanović, and Zehra Nurkanović. Global asymptotic stability and Naimark--Sacker bifurcation of certain mix monotone difference equation. Discrete Dyn. Nat. Soc., Art. ID 7052935, 22 pages, 2018.

Tongxing Li, Nicola Pintus, and Giuseppe Viglialoro. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys., 70(3):Paper No. 86, 18 pages, 2019.

Tongxing Li and Giuseppe Viglialoro. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differential Integral Equations, 34(5-6):315--336, 2021.

Adela Novac, Diana Otrocol, and Dorian Popa. Ulam stability of a linear difference equation in locally convex spaces. Results Math., 76(1):Paper No. 33, 13, 2021.

Masakazu Onitsuka. Influence of the stepsize on Hyers--Ulam stability of first-order homogeneous linear difference equations. Int. J. Difference Equ., 12(2):281--302, 2017.

Masakazu Onitsuka and Tomohiro Shoji. Hyers--Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient. Appl. Math. Lett., 63:102--108, 2017.

Dorian Popa. Hyers--Ulam stability of the linear recurrence with constant coefficients. Adv. Difference Equ., (2):101--107, 2005.

Themistocles M. Rassias. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72(2):297--300, 1978.

Ioan A. Rus. Gronwall lemmas: ten open problems. Sci. Math. Jpn., 70(2):221--228, 2009.

Ioan A. Rus. Ulam stability of ordinary differential equations. Stud. Univ. Babeş-Bolyai Math., 54(4):125--133, 2009.

Ioan A. Rus. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math., 26(1):103--107, 2010.

Yonghong Shen. The Ulam stability of first order linear dynamic equations on time scales. Results Math., 72(4):1881--1895, 2017.

Yonghong Shen and Yongjin Li. A general method for the Ulam stability of linear differential equations. Bull. Malays. Math. Sci. Soc., 42(6):3187--3211, 2019.

Sanket Tikare. Nonlocal initial value problems for first-order dynamic equations on time scales. Appl. Math. E-Notes}, 21:410--420, 2021.

Sanket Tikare, Martin Bohner, Bipan Hazarika, and Ravi P Agarwal. Dynamic local and nonlo-cal initial value problems in Banach spaces. Rend.Circ.Mat.Palermo, II. Ser (2021), 1--16, 2021.

Stanislaw M. Ulam. A collection of mathematical problems. Interscience Tracts in Pure and Applied Mathematics, no. 8. Interscience Publishers, New York-London, 1960.

Fu-Hsiang Wong, Cheh-Chih Yeh, and Chen-Huang Hong. Gronwall inequalities on time scales. Math. Inequal. Appl., 9(1):75--86, 2006.

Downloads

Published

17.01.2024

How to Cite

Bohner, M. ., & Tikare, S. . (2024). Ulam Stability for First-Order Nonlinear Dynamic Equations. Sarajevo Journal of Mathematics, 18(1), 83–96. https://doi.org/10.5644/SJM.18.01.06

Issue

Section

Articles