Dynamics of a Two-Dimensional Cooperative System of Polynomial Difference Equations With Cubic Terms
DOI:
https://doi.org/10.5644/SJM.18.01.09Keywords:
Difference equation, Equilibrium, Period-two solutions, Basin of Attraction, Global dynamicsAbstract
In this paper we present a local dynamics and investigate the global behavior of the following system of difference equations
$x_{n+1}=ax_{n}^{3}+by_{n}^{3}$
$y_{n+1}=Ax_{n}^{3}+By_{n}^{3}$
$n\in\mathbb{N}_0$
with non-negative parameters and initial conditions $x_{0}$ and $y_{0}$ that are real numbers. We establish the relations for local stability of equilibriums and necessary and sufficient conditions for the existence of period-two solution(s). We then use this result to give global behavior results for special ranges of parameters and determine the basins of attraction of all equilibrium points.
Downloads
References
J. Bektešević, V. Hadžiabdić, M. Mehuljić, N. Mujić, The Global Behavior of a Quadratic Difference Equation, Filomat, (32:18), 6203--6210. (2018).
J. Bektešević, M. R. S. Kulenović, E. Pilav, Global Dynamics of Quadratic Second Order Difference Equation in the First Quadrant, Appl. Math. Comput., 227 (2014), 50--65.
J. Bektešević, M. R. S. Kulenović, E. Pilav, Global Dynamics of Cubic Second Order Difference Equation in the First Quadrant, Adv. Differ. Equ., (2015), 2015:176.
J. Bektešević, M. R. S. Kulenović, E. Pilav, Asymptotic Approximation of the Stable and Unstable Manifolds of the Fixed Points of a Two-dimensional Cubic Map, Int. J. Difference Equ., Vol 10 No 1, (2015), 39--58.
J. Bektešević, M. R. S. Kulenović, E. Pilav, Asymptotic Approximation of the Stable and Unstable Manifolds of the Fixed Points of a Two-dimensional Quadratic Map, J. Computational Analysis and Applications, Vol 21 No1 (2016), 35--51
A. Brett and M. R. S. Kulenović, Basins of Attraction of Equilibrium Points of Monotone Difference Equations, Sarajevo J. Math. 5(18) (2009), 211--233.
V. Hadžiabdić, M. R. S. Kulenović, E. Pilav, Dynamics of a Competitive System of Rational Difference Equations with Quadratic Terms, Adv. Differ. Equ. 2014, 301 (2014).
S. Janson, Resultant and discriminant of polynomials}, (2010). http://www2.math.uu.se/symbol{126}svante/papers/.
F. Kirwan, Complex Algebraic Curves, London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1992).
M. R. S. Kulenović and O. Merino, Invariant Manifolds for Competitive Discrete Systems in the Plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), no. 8, 2471--2486.
M. R. S. Kulenović and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman & Hall/CRC, Boca Raton (2002).
M. R. S. Kulenović and O. Merino, Global Bifurcation for Competitive Systems in the Plane, Discrete Contin. Dyn. Syst. B, 12 (2009), 133--149.
M. R. S. Kulenović and G. Ladas, Dynamics of Second-order rational difference equations with open problems and conjectures, Chapman & Hall/CRC, Boca Raton, FL, 2002.
H. L. Smith, Planar Competitive and Cooperative Difference Equations, J. Difference Equ. Appl. 3(1998), 335--357.
R.J. Walker, Algebraic Curves, Princeton University Press, Princeton (1950).
L. Yang, X. Hou, Z. Zeng, A Complete Discrimination System for Polynomials, Science in China (Series E), Vol 39 (1996), No 6, 628-646.