A Study on Fibonacci Functions and Gaussian Fibonacci Functions

Authors

  • Yüksel Soykan Zonguldak Bülent Ecevit University Department of Mathematics Art and Science Faculty, 67100, Zonguldak
  • Melih Göcen Zonguldak Bülent Ecevit University Department of Mathematics Art and Science Faculty, 67100, Zonguldak
  • Erkan Taşdemir Kırklareli University, Pınarhisar Vocational School 39300, Kırklareli
  • Can Murat Dikmen Zonguldak Bülent Ecevit University Department of Mathematics Art and Science Faculty, 67100, Zonguldak

DOI:

https://doi.org/10.5644/SJM.18.01.11

Keywords:

Fibonacci numbers, Fibonacci functions, Gaussian numbers, Gaussian Fibonacci functions, f-even functions

Abstract

In this paper, we define Gaussian Fibonacci functions and investigate them
on the set of real numbers $\mathbb{R},$ i.e., functions $f_{G}$ $:$
$\mathbb{R}\rightarrow \mathbb{C}$ such that for all $x\in \mathbb{R},$ $%
n\in \mathbb{Z},$ $f_{G}(x+n)=f(x+n)+if(x+n-1)$ where $f$ $:$ $\mathbb{R}%
\rightarrow \mathbb{R}$ is a Fibonacci function which is given as $%
f(x+2)=f(x+1)+f(x)$ for all $x\in \mathbb{R}$. Then the concept of Gaussian
Fibonacci functions by using the concept of $f$-even and $f$-odd functions
is developed. Also, we present linear sum formulas of Gaussian Fibonacci
functions. Moreover, it is shown that if $f_{G}$ is a Gaussian Fibonacci
function with Fibonacci function $f$, then $\lim_{x\rightarrow \infty }\frac{%
f_{G}(x+1)}{f_{G}(x)}=\alpha $ and\ $\lim_{x\rightarrow \infty }\frac{%
f_{G}(x)}{f(x)}=1+\left( \alpha -1\right) i,$ where $\alpha $ is the
positive real root of equation $x^{2}-x-1=0$ for which $\alpha >1$.
Furthermore, matrix formulations of Fibonacci functions and Gaussian Fibonacci functions are given. We also present linear sum formulas and matrix formulations of Fibonacci functions which have not been studied in the literature.

Downloads

Download data is not yet available.

References

Arolkar, S., Valaulikar, Y.S., Hyers-Ulam Stability of Generalized Tribonacci Functional Equation, Turkish Journal of Analysis and Number Theory, 2017, 5(3), 80-85, 2017. DOI:10.12691/tjant-5-3-1

Elmore, M., Fibonacci Functions, Fibonacci Quarterly, 5(4): 371-382, 1967.

Rabago, J.F.T., On Second-Order Linear Recurrent Functions with Period k and Proofs to two Conjectures of Sroysang, Hacettepe Journal of Mathematics and Statistics, 45(2), 429- 446, 2016.

Gandhi K.R.R., (2012). Exploration of Fibonacci Function, Bulletin of Mathematical Sciences and Applications, 1(1), 77-84, 2012.

Han, J.S., H.S. Kim, Neggers, J., On Fibonacci Functions with Fibonacci Numbers, Advances in Difference Equations, 2012. https://doi.org/10.1186/1687-1847-2012-126

Magnani, K.E., On Third-Order Linear Recurrent Functions, Discrete Dynamics in Nature and Society, Volume 2019, Article ID 9489437, 4 pages. https://doi.org/10.1155/2019/9489437

Parizi, M.N., Gordji, M. E., On Tribonacci Functions and Tribonacci Numbers, Int. J. Math. Comput. Sci., 11(1), 23-32, 2016.

Parker, F.D., A Fibonacci Function, Fibonacci Quarterly, 6(1), 1-2, 1968.

Sharma, K.K., On the Extension of Generalized Fibonacci Function, International Journal of Advanced and Applied Sciences, 5(7), 58-63, 2018.

Sharma, K.K., textit{Generalized Tribonacci Function and Tribonacci Numbers, International Journal of Recent Technology and Engineering (IJRTE), 9(1), 1313-1316, 2020.

Sharma, K.K., Panwar, V., On Tetranacci Functions and Tetranacci Numbers, Int. J. Math. Comput. Sci., 15(3), 923-932, 2020.

Spickerman, W.R., A Note on Fibonacci Functions, Fibonacci Quarterly, 8(4), 397-401, 1970.

Sriponpaew, B., Sassanapitax, L., On k-Step Fibonacci Functions and k-Step Fibonacci Numbers, International Journal of Mathematics and Computer Science, 15(4), 1123-1128, 2020.

Sroysang, B., On Fibonacci Functions with Period $k$, Discrete Dynamics in Nature and Society, Article ID 418123, 4 pages. 2013. https://doi.org/10.1155/2013/418123

Soykan, Y., Göcen, M., Okumuş, İ., On Tribonacci Functions and Gaussian Tribonacci Functions, Preprints 2021, 2021090155 (doi: 10.20944/preprints202109.0155.v1).

Soykan, Y., Some Properties of Generalized Fibonacci Numbers: Identities, Recurrence Properties and Closed Forms of the Sum Formulas $sum_{k=0}^{n}x^{k}W_{mk+j}$, Archives of Current Research International, 21(3), 11-38, 2021. DOI: 10.9734/ACRI/2021/v21i330235

Soykan, Y., On Summing Formulas For Generalized Fibonacci and Gaussian Generalized Fibonacci Numbers, Advances in Research, 20(2), 1-15, 2019.

Wolfram, D.A., Solving Generalized Fibonacci Recurrences, Fibonacci Quarterly, 36, 129-145, 1998.

Downloads

Published

17.01.2024

How to Cite

Soykan, Y. ., Göcen, M. ., Taşdemir, E. ., & Murat Dikmen, C. . (2024). A Study on Fibonacci Functions and Gaussian Fibonacci Functions. Sarajevo Journal of Mathematics, 18(1), 177–195. https://doi.org/10.5644/SJM.18.01.11

Issue

Section

Articles