Construction of a Subspace of the Spectrum of L From the L-Slice for a Locale L

Authors

  • Kochanamkulangara Sulaiman Sabna Assistant Professor Department of Mathematics K.K.T.M Government College Pullut, Kerala
  • Natuvil Madhom Rama Iyer Mangalambal Department of Mathematics St. Joseph’s College (Autonomous) Irinjalakuda, Kerala

DOI:

https://doi.org/10.5644/SJM.19.01.12

Keywords:

L-slice, filters and compact element

Abstract

The notion of compactness in the L-slice $(\sigma,J)$ of a locale $ L $ is introduced and we show that L-slice compactness is stronger than topological compactness and localic compactness. A subspace $ Y $, of the spectrum $Sp(L)$ of the locale $ L $, is constructed using filters $F_{x}=\{a \in L: \sigma(a,x)=x\}$ for compact elements $ x \in(\sigma,J)$ and the compactness of the subspace $ Y $ is characterised using the existence of a maximal compact element in the L-slice $ (\sigma,J) $.

Downloads

Download data is not yet available.

Downloads

Published

17.01.2024

How to Cite

Sabna, K. S. ., & Mangalambal, N. M. R. I. . (2024). Construction of a Subspace of the Spectrum of L From the L-Slice for a Locale L. Sarajevo Journal of Mathematics, 19(1), 129–137. https://doi.org/10.5644/SJM.19.01.12

Issue

Section

Articles