Slant Lightlike Submanifolds of Semi-Riemannian Product Manifolds

Authors

  • Tejinder Kumar Department of Mathematics Maharaja Agrasen University Baddi-174103, Himachal Pradesh
  • Sangeet Kumar Department of MathematicsSri Guru Teg Bahadur Khalsa College Sri Anandpur Sahib-140118, Punjab
  • Pankaj Kumar Department of Mathematics Maharaja Agrasen University Baddi-174103, Himachal Pradesh

DOI:

https://doi.org/10.5644/SJM.19.02.02

Keywords:

Slant lightlike submanifold, totally umbilical lightlike submanifold, semi-Riemannian product manifold

Abstract

The aim of the present paper is to investigate geometric characteristics of slant lightlike submanifolds of semi-Riemannian product manifolds. We obtain characterization theorems for the existence of slant lightlike submanifolds of semi-Riemannian product manifolds. We also find a necessary and sufficient condition enabling the induced connection on slant lightlike submanifolds of semi-Riemannian product manifolds to be a metric connection. Then, we establish some results for the integrability of distributions associated with this class of lightlike submanifolds. Consequently, we investigate totally umbilical slant lightlike submanifolds of semi-Riemannian product manifolds. In particular, we prove that every totally umbilical slant lightlike submanifold of a semi-Riemannian product manifold is always totally geodesic.

Downloads

Download data is not yet available.

References

C. L. Bejan and K. L. Duggal, Global lightlike manifolds and harmonicity, Kodai Math. J., 28 (2005), 131-145.

A. Carriazo, Bi-slant immersion, Proc. of ICRAMS, Kharagpur, India (2000), 88-97.

B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc., 41 (1990), 135-147.

B. Y. Chen, Geometry of Slant submanifolds, Katholieke University, Leuven, 1990.

K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications: Mathematics and its Applications, 364, Kluwer Academic Publishers, 1996.

K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J., 26 (1) (2003), 49-68.

G. Gupta, R. Sachdeva, R. Kumar and R. K. Nagaich, Pointwise slant lightlike submanifolds of indefinite Kaehler manifolds, Mediterr. J. Math., 15 (3) (2018), Article ID 105.

S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, 1973.

S. Kumar, R. Kumar and R. K. Nagaich, GCR-lightlike submanifolds of a semi-Riemannian product manifold, Bull. Korean Math. Soc., 51 (3) (2014), 883-899.

A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie, 39 (1996), 183-198.

A. Lotta, Three dimensional slant submanifolds of K-Contact manifolds, Balkan J. Geom. Appl., 3 (1998), 37-51.

N. Papaghiuc, Semi-slant submanifolds of Kaehlerian manifolds, An. Stiin. Univ. Al. I. Cuza. Iasi. Math., 9 (1994), 55-61.

B. Sahin, Warped product submanifolds of a Kaehler manifold with a slant factor, Ann. Pol. Math., 95 (2009), 207-226.

B. Sahin, Slant lightlike submanifolds of indefinite Hermitian manifolds, Balkan J. Geom. Appl., 13 (2008), 107-119.

B. Sahin, Slant lightlike submanifolds of indefinite Sasakian manifolds, Filomat, 26 (2) (2012), 277-287.

B. Sahin, Screen slant lightlike submanifolds, Int. Electron. J. Geom., 2 (2009), 41-54.

S. S. Shukla and A. Yadav, Semi-slant lightlike submanifolds of indefinite Kaehler manifolds, Revista De La, 56 (2) (2015), 21-37.

S. S. Shukla and A. Yadav, Screen pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds, Novi Sad J. Math., 46 (1) (2016), 147-158.

Downloads

Published

24.01.2024

How to Cite

Kumar, T., Kumar, S., & Kumar, P. (2024). Slant Lightlike Submanifolds of Semi-Riemannian Product Manifolds. Sarajevo Journal of Mathematics, 19(2), 155–170. https://doi.org/10.5644/SJM.19.02.02

Issue

Section

Articles