A Korovkin-type approximation theorem for positive linear operators in $H_{\omega }\left( K\right) $ via power series method

Authors

  • Ebru Altiparmak Erzurum Technical University Department of Mathematics, Faculty of Science, 25010 Erzurum
  • Özlem Girgin Atlihan Pamukkale University Department of Mathematics, Faculty of Science, 25700, Denizli,

DOI:

https://doi.org/10.5644/SJM.19.02.04

Keywords:

Korovkin Theorem, Power series method, Positive linear operators, Bleimann Butzer and Hanh operators

Abstract

The aim of this paper is to present Korovkin theorems for positive linear operators of two variables from $H_{\omega }\left( K\right) $ into $%C_{B}\left( K\right) $ via the power series method. In addition, we give an example that our new approximation result works but its classical case does not work. Furthermore, we obtain the rate of convergence of these operators.

Downloads

Download data is not yet available.

References

F. Altomare and M. Campiti, Korovkin type approximation theory and its applications, De Gruyter Stud. Math., 17 (1994).

G. A. Anastassiou and S.G. Gal, Approximation theory: Moduli of Continuity and Global Smoothness Preservation, Birkhauser, Boston, (2000).

N.G. Bleiman P.L. Butzer and L. Hahn, A Bernstein type operator approximating continuous functions on semiaxis, Indag. Math., 83(3) (1980) pp. 255-262.

J. Boos, Classical and Modern Methods in Summability, Oxford Science Publishers, Oxford (2000).

K. Demirci and F. Dirik, A Korovkin type approximation theorem for double sequences of positive linear operators of two variables in A-statistical sense, Bull. Korean Math. Soc., 47(4) (2010) pp. 825-837.

K. Demirci and F. Dirik, Approximation for periodic functions via statistical $sigma$-convergence Mathematical Communications, 16(1) (2011) pp. 77-84.

F. Dirik S. Yildiz and K.Demirci, Abstract Korovkin theory for double sequences via power series method in modular spaces, Operators and Matrices, 13(4) (2019) pp. 1023-1034.

O. Duman M. K. Khan and C. Orhan, A-Statistical convergence of approximating operators, Math. Inequal., Appl.,6(4) (2003) pp. 689-699.

O. Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161(2) (2004) pp. 187-197.

E. Erkuş and O. Duman, A-Statical extension of the Korovkin type approximation theorem, Proc. Indian Acad. Sci., 115(4) (2005) pp. 499-508.

A.D. Gadjiev and Ö. Çakar, On uniform approximation by Bleilmann, Butzer and Hahn on all positive semiaxis, Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci., 19(5) (1999) pp. 21-26.

W. Kratz and U.Stadtmüller, Tauberian theorems for $J_{p}$-summability, J. Math Anal. Appl., 139 (1989) pp. 362-371.

G.G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, (1996).

J. J. Swetits and B. Wood, Quantitative estimates for $%L_{p} $ approximation with positive linear operators, J. Approx. Theory, 38(1) (1983) pp. 81-89.

S. Karakuş and K. Demirci, Summation Process of Korovkin type approximation theorem, Miskolc Math. Notes, 12(1) (2011) pp. 75-85.

P.P. Korovkin, On convergence of linear positive operators in the space of continuous functions. Dokladt Akad. Nauk SSR. 90 (1953) pp. 961-964.

P.P. Korovkin, Linear Operators and Approximation Theory. Hindustan Publishers Corporation, Delhi, (1960).

Özgüç, İ., Taş, E. A Korovkin-type approximation theorem and power series method, Results Math., 69(2016) pp. 497-504.

E. Taş and Ö.G. Atlıhan, Korovkin type approximation theorems via power series method, Sao Paulo J. Math. Sci., 13(2016) (2019) pp. 696-707.

M. Ünver , Abel transforms of positive linear operators, AIP Conf. Proc., 1558(1) (2013) pp. 1148-1151.

T. Yurdakadim, Some Korovkin type results via power series method in modular spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65 (2016) pp. 65-76.

S. Yıldız, F. Dirik and K. & Demirci, Korovkin type approximation theorem via $K_{a}$- convergence on weighted spaces, Mathematical Methods in the Applied Sciences, 42(16) (2019) pp. 5371-5382.

Downloads

Published

25.01.2024

How to Cite

Altiparmak, E., & Atlihan, Özlem G. (2024). A Korovkin-type approximation theorem for positive linear operators in $H_{\omega }\left( K\right) $ via power series method. Sarajevo Journal of Mathematics, 19(2), 183–191. https://doi.org/10.5644/SJM.19.02.04

Issue

Section

Articles