Gaussian Quaternion Involving Leonardo Numbers

Authors

  • Hasan Gökbaş Bitlis Eren University, Science-Arts Faculty,m Mathematics Department, 13000, Bitlis

DOI:

https://doi.org/10.5644/SJM.19.02.06

Keywords:

Gaussian quaternion, quaternion, Fibonacci numbers, Leonardo numbers

Abstract

In this study, using the Leonardo numbers, we define a new type of quaternion that is called a Leonard Gaussian quaternion. We also give a negative-Leonardo Gaussian quaternion. These numbers are introduced from the set of complex numbers and quaternions. Moreover, we obtain the Binet’s formula, generating function formula, d’Ocagne’s identity, Catalan’s identity, Cassini’s identity, Honsberger’s identity, like-Vajda’s identity and some formulas for these new types of numbers. Morever, we give the matrix representation of the Leonardo Gaussian quaternion.

Downloads

Download data is not yet available.

References

S. L. Adler, Quaternionic quantum mechanics and quantum fields, New York Oxford Univ. Press, 1994.

F. Alves, R. Vieira, The Newton Fractal’s Leonardo Sequence Study with the Google Colab, International Electronic Journal of Mathematics Education 2020; 15 (2): 1-9.

J. Baez, The Octonians, Bull. Amer. Math. Soc., 2001; 145 (39): 145-205.

G. Bilgici, Two generalizations of Lucas sequence, Applied Mathematics and Computation 2014; 245: 526-538.

P. Catarino, A. Borges, On Leonardo Numbers, Acta Math. Univ. Comenianae 2020; 1: 75-86.

C. B. Çimen, A. Ípek, On Pell Quaternions and Pell-Lucas Quaternions, Adv. Appl. Clifford Algebras 2016; 26 (1): 39–51.

M. Edson, O. Yayenie, A new generalization of Fibonacci sequences and the extended Binet’s formula, Inyegers Electron. J. Comb. Number Theor. 2009; 9: 639-654.

S. Falcon, A. Plaza, On the Fibonacci $k$-numbers, Chaos, Solitions and Fractals 2007; 32 (5): 1615-1624.

A. H. George, Some formula for the Fibonacci sequence with generalization, Fibonacci Quart. 1969; 7: 113-130.

H. Gökbaş, A Note on BiGaussian Pell and Pell-Lucas Numbers, Jourrnal of Science and Arts 2021; 3 (56): 669-680.

S. Halıcı, On Fibonacci Quaternions, Adv. Appl. Clifford Algebras 2012; 22: 321-327.

W. R. Hamilton, Li on Quaternions; or on a New System of Imaginaries in Algebra, Philos. Mag. Ser. Taylor and Francis 1844; 25 (163): 10.

C. J. Harman, Complex Fibonacci Numbers, The Fibonacci Quart. 1981; 19 (1): 82-86.

A. F. Horadam, A generalized Fibonacci sequence, Math. Mag. 1961; 68: 455-459.

A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly 1963; 70: 289-291.

R. A. Horn, Johnson CR. Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.

J. H. Jordan, Gaussian Fibonacci and Lucas Numbers, Fib. Quart. 1965; 3: 315.

T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Intersience Publication, USA, 2001.

M. Mangueria, F. Alves, P. Catarino, Os Biquternions Elipticos de Leonardo, Revista Eletronica Paulista de Matematica 2021; 21: 130-139.

S. P. Pethe, C. N. Phadte, A generalization of the Fibonacci sequence, Applications of Fibonacci numbers 1992; 5: 465-472.

J. C. Pond, Generalized Fibonacci Summations, Fibonacci Quart. 1968; 6: 97-108.

L. Ramirez, Some combinatorial properties of the $k$-Fibonacci and the $k$-Lucas quaternions, An. S t. Univ. Ovidius Constanta, Ser. Mat. 2015; 23 (2): 201-212.

A. G. Shannon, A Note on Generalized Leonardo Numbers, Notes on Number theory and Discrete Mathematics 2019; 25 (3): 97-101.

S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Ellis Horwood Limited Publ., England, 1989.

R. Vieira, F. Alves, P. Catarino, Relaçoes Bidimension Ais e Identidades da Sequencia de Leonardo, Revista Sergipana de Matematica e Educaçao Matematica 2019; 2: 156-173.

J. P. Ward, Quaternions and Cayley Numbers, Algebra and Applications, Kluwer Academic Publishers, London, 1997.

Downloads

Published

25.01.2024

How to Cite

Gökbaş, H. (2024). Gaussian Quaternion Involving Leonardo Numbers. Sarajevo Journal of Mathematics, 19(2), 207–214. https://doi.org/10.5644/SJM.19.02.06

Issue

Section

Articles