The ideal-based zero-divisor graph of commutative chained rings

Authors

  • David F. Anderson The University of Tennessee Knoxville, TN 37996
  • S. Ebrahimi Atani Department of MathematicsUniversity of GuilanP.O. Box 1914, Rasht
  • M. Shajari Kohan Department of MathematicsUniversity of GuilanP.O. Box 1914, Rasht
  • Z. Ebrahimi Sarvandi Department of MathematicsUniversity of GuilanP.O. Box 1914, Rasht

DOI:

https://doi.org/10.5644/SJM.10.1.01%20

Keywords:

Zero-divisor graph, deal-based zero-divisor graph, chained ring

Abstract

Let $I$ be a proper ideal of a commutative ring $R$ with $1 \neq 0$. The ideal-based zero-divisor graph of $R$ with respect to $I$, denoted by $\Gamma_I(R)$, is the (simple) graph with vertices $\{ \, x\in R \setminus I \mid xy \in I$ for some $y \in R\setminus I \, \}$, and distinct vertices $x$ and $y$ are adjacent if and only if $xy \in I$. In this paper, we study $\Gamma_I(R)$ for commutative rings $R$ such that $R/I$ is a chained ring.

Downloads

Download data is not yet available.

References

D. D. Anderson and M. Naseer, Beck's coloring of commutative rings, J. Algebra, 159 (1993), 500--514.

D. F. Anderson, M. C. Axtell and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York, 2011, 23-45.

D. F. Anderson and A. Badawi, On the zero-divisor graph of a commutative ring, Commun. Algebra, 36 (2008), 3073--3092

D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706--2719.

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434--447.

D. F. Anderson and S. Shirinkam, Some remarks on the graph $Gamma_I(R)$, Commun. Algebra, to appear.

I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208--226.

B. Bolloboás, Modern Graph Theory, Springer, New York, 1998.

J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, and S. Spiroff, On zero divisor graphs, in Progress in Commutative Algebra 2: Closure, Finiteness and Factorization (C. Francisco et al. Eds.), Walter Gruyter, Berlin, 2012, 241--299.

I. Kaplansky, Commutative Rings, Rev. Ed., University of Chicago Press, Chicago, 1974.

S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Commun. Algebra, 31 (2003), 4425--4443.

Downloads

Published

04.06.2024

How to Cite

Anderson, D. F., Atani, S. E., Kohan, M. S. ., & Sarvandi, Z. E. (2024). The ideal-based zero-divisor graph of commutative chained rings. Sarajevo Journal of Mathematics, 10(1), 3–12. https://doi.org/10.5644/SJM.10.1.01

Issue

Section

Articles