Subtractive extension of ideals in semirings
DOI:
https://doi.org/10.5644/SJM.10.1.02Keywords:
Semiring, subtractive ideal, $Q$-ideal, quotient semiring, subtractive extension of an ideal, semiprime idealAbstract
In this paper, we (1) obtain the $k$-closure of ideals and a characterization of subtractive extension of ideals in the semiring $\mathbb{Z}_0^+$; (2) introduce the concept of closure of an ideal $A$ of a semiring $R$ with respect to an ideal $I$ of $R$ and prove the set of all subtractive extensions of an ideal $I$ of a semiring $R$ is a complete lattice; (3) show that a subtractive extension $P$ of a $Q$-ideal $I$ in a semiring $R$ is a semiprime ideal if and only if $P/I_{(Q\cap P)}$ is a semiprime ideal in the quotient semiring $R/I_{(Q)}.$
Downloads
References
S. E. Atani, The ideal theory in quotients of commutative semirings, Glas. Mat. Ser. III, 42 (62) (2007), no. 2, 301--308.
P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21 (1969), 412--416.
P. J. Allen and L. Dale, Ideal theory in the semiring $mathbb{Z}_0^+$, Publ. Math. Debrecen, 22 (3-4) (1975), 219--224.
J. N. Chaudhari and D. R. Bonde, Ideal theory in quotient semirings, Thai J. Math., 12 (1) (2014), 95--101.
J. N. Chaudhari and V. Gupta, Weak primary decomposition theorem for right Noetherian semirings, Indian J. Pure Appl. Math., 25 (6) (1994), 647--654.
L. Dale, it The $k$-closure of monic and monic free ideals in a polynomial semiring, Proc. Amer. Math. Soc., 64 (2) (1977), 219--226.
J. S. Golan, Semiring and Their Applications, Kluwer Academic publisher Dordrecht, 1999.
V. Gupta and J. N. Chaudhari, Some remarks on semirings, Rad. Mat., 12 (2003), 13--18.
M. K. Sen and M. R. Adhikari, On $k$-ideals of semirings, Internat. J. Math. Math. Sci., 15 (2) (1992), 347--350.