On parameter classes of solutions of the quasilinear second order differential equation
DOI:
https://doi.org/10.5644/SJM.10.1.08Keywords:
Quasilinear differential equation, parameter classes of solutions, behavior of solutionsAbstract
The quasilinear second order differential equation
\begin{equation*}
\overset{..}{x}+\left( 1+p\left( x,t\right) \right) \;\overset{.}{x}+p\left(x,t\right) \;x=f\left( x,t\right)
\end{equation*}
where $p,f\in C^{1}\left( D,\mathbb{R}\right) ,\;D=I_{x}\mathbb{\times } I,\;I_{x}\subseteq \mathbb{R}$ open set, $I=\left\langle \overline{t},\infty \right\rangle $ is under consideration. The paper presents some results on the existence and behavior of parameter classes of solutions of this equation. The qualitative analysis theory and topological retraction method are used. The general results are presented and subsequently certain examples are considered.
Downloads
References
Zh. Athanassov, Existence, uniqueness, and stability theorems for bounded solutions of nonlinear differential systems, Ann. Mat. Pura Appl., 140 (4) (1985), 301–-330.
S. I. Nenov, Asymptotic behavior of the solutions of a class of second order differential systems, Electron. J. Differential Equations 2001, No. 12, 9 pp.
A. Omerspahić, Retraction method in the qualitative analysis of the solutions of the quasilinear second order differential equation, Applied Mathematics and Computing (edited by M. Rogina et al.), Department of Mathematics, University of Zagreb, Zagreb, 2001, 165--173.
B. Vrdoljak and A. Omerspahić, Qualitative analysis of some solutions of quasilinear system of diferencijal equations, Applied Mathematics and Scietific Computing (edited by Drmač et al.), Kluwer Academic/Plenum Publishers, 2002, 323--332.
B.Vrdoljak and A. Omerspahić, Existence and approximation of solutions of a system of differential
equations of Volterra type, Math. Commun., 9 (2) 2004, 125--139.
A. Omerspahić and B.Vrdoljak, On parameter classes of solutions for system of quasilinear differential equations, Proceeding of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordreht, 2005, 263--272.
A. Omerspahić, Existence and behavior solutions of a system of quasilinear differential equations, Creat. Math. Inform., 17 (3) 2008, 487--492.
T. Wažewski, Sur un principe topologique de l'examen de l'allure asymptotique des integrales des equations differentielles ordinaires, Ann. Soc. Polon. Math., 20 (1947), 279--313.