A note on the rates of convergence of double sequences

Authors

  • Metin Başarır Department of Mathematics, Sakarya University, 54187, Sakarya

DOI:

https://doi.org/10.5644/SJM.10.1.11

Abstract

In this paper, we define the rates of convergence of double sequences and give some theorems on the rates of convergence of bounded double null sequences with real terms.

Downloads

Download data is not yet available.

References

A. Zygmund, Trigonometric Series, University Press, (Cambridge, 1959).

D. F. Dawson, Some rate invariant sequence transformations, Proc. Amer. Math. Soc.,1 5 (5) (1964), 710--714.

H. I. Miller, A class of non-rate invariant transformations, Rad. Odjeljenje Prir. Mat. Nauka, XLV/12 (1973), 41-43.

H. I. Miller, Rates of convergence and summability, Rad. Odjeljenje Prir. Mat. Nauka, XLV/12 (1973), 85-92.

H. I. Miller, A note on matrix summability and rates of convergence, Mat. Vesnik, 10 (25) (1973), 145-147.

I. Szalay, On the strong Cesaro summability of double series, Anal. Math., 15 (1989), 321-341.

K. Knopp, Theory and Applications of Infinite Series, Berlin, 1931.

M. Bajraktarevic, Sur quelques problemes concernant la vitesse de convergence at la sommabilite des suites, Rad. Odjeljenje Prir. Mat. Nauka, LII/14 (1974), 5-27.

M. Bajraktarevic, Sur quelques problémes concernant la vitesse de convergence at la sommabilité des suites (II), Publ. Inst. Math. (Beograd), (N.S.), 16 (30) (1973), 25-30.

M. Başaır, On rates of convergence of sequences, J. Orissa Math. Soc., 7 (2) (1988), 89-98.

Downloads

Published

04.06.2024

How to Cite

Başarır, M. (2024). A note on the rates of convergence of double sequences. Sarajevo Journal of Mathematics, 10(1), 87–92. https://doi.org/10.5644/SJM.10.1.11

Issue

Section

Articles