Some preservation properties of MKZ-Stancu type operators

Authors

  • Ayşegül Erençin Department of Mathematics, Abant İzzet Baysal University, Faculty of Arts and Sciences, 14280, Bolu
  • Gülen Başcanbaz-Tunca Department of Mathematics, Faculty of Science, Ankara University, 06100, Tandoan, Ankara
  • Fatma Taşdelen Department of Mathematics, Faculty of Science, Ankara University, 06100, Tandoan, Ankara

DOI:

https://doi.org/10.5644/SJM.10.1.12

Keywords:

Function of modulus of continuity, Lipschitz continuous function, Stancu type operator

Abstract

In this work, we construct Stancu type modification of the generalization of Meyer-König and Zeller operators (MKZ) defined in [12]. We show that the Lipschitz constant of a Lipschitz continuous function and the properties of the function of modulus of continuity can be retained by these operators.

Downloads

Download data is not yet available.

References

B. M. Brown, D. Elliott and D. F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49 (2) (1987), 196--199.

İ. Büyükyazii, Approximation by Stancu-Chlodowsky polynomials, Comput. Math. Appl., 59 (1) (2010), 274--282.

Feilong Cao, Chunmei Ding and Zongben Xu, On multivariate Baskakov operators, J. Math. Anal. Appl., 307 (1) (2005), 274--291.

E. W. Cheney and A. Sharma, Bernstein power series, Canad. J. Math., 16 (1964), 241--253.

A. Erençin, H. G. İnce and A. Olgun, A class of linear positive operators in weighted spaces, Math. Slovaca, 62 (1) (2012), 63--76.

Z. Finta, Direct and converse results for Stancu operator, Period. Math. Hungar., 44 (1) (2002), 1--6.

S. G. Gal, Approximation by complex Berstein-Kantorovich and Stancu-Kantorovich polynomials and their iterates in compact disk, Rev. Anal. Numér. Théor. Approx., 37 (2) (2008), 159--168.

M. K. Khan, Approximation properties of Beta operators, Progress in Approximation Theory, (1991), Academic Press, Boston, MA, (1991), 483--495.

Zhongkai Li, Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102 (2000), 171--174.

W. Meyer-König and K. Zeller, Bernsteinsche potenzreihen, Studia Math., 19 (1960), 89--94.

G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350 (1) (2009), 50--55.

L. Rempulska and M. Skorupka, Approximation by generalized MKZ-operators in polynomial weighted spaces, Anal. Theory Appl., 23 (1) (2007), 64--75.

D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13 (1968), 1173--1194.

E. I. Stoica-Laze, On the Stancu type linear positive operators of approximation constructed by using the beta and gamma functions, Stud. Univ. Babeş-Bolyai Math., 54 (2)(2009), 117--126.

T. Trif, An Elementary proof of the preservation of Lipschitz constants by the Meyer-König and Zeller operators, J. Inequal. Pure Appl. Math., 4 (5) (2003), Article 90, 3pp.

G. Başcanbaz-Tunca and Y. Tuncer, Some properties of multivariate beta operator, Fasc. Math., 41 (2009), 31--43.

G. Başcanbaz-Tunca and Y. Tuncer, On a Chlodovsky variant of a multivariate beta operator, J. Comput. Appl. Math., 235 (16) (2011), 4816--4824.

G. Başcanbaz-Tunca and F. Taşdelen, On Chlodovsky form of the Meyer-König and Zeller operators, An. Univ. Vest Timiş. Ser. Mat.-Inform., XLIX, 2 (2011), 137--144.

Jiang Yanjie, Li Junming, The rate of convergence of q-Bernstein-Stancu polynomials, Int. J. Wavelets, Multiresol. Info. Proc., 7 (6) (2009), 773--779.

Downloads

Published

04.06.2024

How to Cite

Erençin, A., Başcanbaz-Tunca, G., & Taşdelen, F. (2024). Some preservation properties of MKZ-Stancu type operators. Sarajevo Journal of Mathematics, 10(1), 93–102. https://doi.org/10.5644/SJM.10.1.12

Issue

Section

Articles