Some preservation properties of MKZ-Stancu type operators

Authors

  • Ayşegül Erençin Department of Mathematics, Abant İzzet Baysal University, Faculty of Arts and Sciences, 14280, Bolu
  • Gülen Başcanbaz-Tunca Department of Mathematics, Faculty of Science, Ankara University, 06100, Tandoan, Ankara
  • Fatma Taşdelen Department of Mathematics, Faculty of Science, Ankara University, 06100, Tandoan, Ankara

DOI:

https://doi.org/10.5644/SJM.10.1.12

Keywords:

Function of modulus of continuity, Lipschitz continuous function, Stancu type operator

Abstract

In this work, we construct Stancu type modification of the generalization of Meyer-König and Zeller operators (MKZ) defined in [12]. We show that the Lipschitz constant of a Lipschitz continuous function and the properties of the function of modulus of continuity can be retained by these operators.

 

Statistics

Abstract: 43  /   PDF: 10

 

References

B. M. Brown, D. Elliott and D. F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49 (2) (1987), 196--199.

İ. Büyükyazii, Approximation by Stancu-Chlodowsky polynomials, Comput. Math. Appl., 59 (1) (2010), 274--282.

Feilong Cao, Chunmei Ding and Zongben Xu, On multivariate Baskakov operators, J. Math. Anal. Appl., 307 (1) (2005), 274--291.

E. W. Cheney and A. Sharma, Bernstein power series, Canad. J. Math., 16 (1964), 241--253.

A. Erençin, H. G. İnce and A. Olgun, A class of linear positive operators in weighted spaces, Math. Slovaca, 62 (1) (2012), 63--76.

Z. Finta, Direct and converse results for Stancu operator, Period. Math. Hungar., 44 (1) (2002), 1--6.

S. G. Gal, Approximation by complex Berstein-Kantorovich and Stancu-Kantorovich polynomials and their iterates in compact disk, Rev. Anal. Numér. Théor. Approx., 37 (2) (2008), 159--168.

M. K. Khan, Approximation properties of Beta operators, Progress in Approximation Theory, (1991), Academic Press, Boston, MA, (1991), 483--495.

Zhongkai Li, Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102 (2000), 171--174.

W. Meyer-König and K. Zeller, Bernsteinsche potenzreihen, Studia Math., 19 (1960), 89--94.

G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350 (1) (2009), 50--55.

L. Rempulska and M. Skorupka, Approximation by generalized MKZ-operators in polynomial weighted spaces, Anal. Theory Appl., 23 (1) (2007), 64--75.

D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13 (1968), 1173--1194.

E. I. Stoica-Laze, On the Stancu type linear positive operators of approximation constructed by using the beta and gamma functions, Stud. Univ. Babeş-Bolyai Math., 54 (2)(2009), 117--126.

T. Trif, An Elementary proof of the preservation of Lipschitz constants by the Meyer-König and Zeller operators, J. Inequal. Pure Appl. Math., 4 (5) (2003), Article 90, 3pp.

G. Başcanbaz-Tunca and Y. Tuncer, Some properties of multivariate beta operator, Fasc. Math., 41 (2009), 31--43.

G. Başcanbaz-Tunca and Y. Tuncer, On a Chlodovsky variant of a multivariate beta operator, J. Comput. Appl. Math., 235 (16) (2011), 4816--4824.

G. Başcanbaz-Tunca and F. Taşdelen, On Chlodovsky form of the Meyer-König and Zeller operators, An. Univ. Vest Timiş. Ser. Mat.-Inform., XLIX, 2 (2011), 137--144.

Jiang Yanjie, Li Junming, The rate of convergence of q-Bernstein-Stancu polynomials, Int. J. Wavelets, Multiresol. Info. Proc., 7 (6) (2009), 773--779.

Downloads

Published

04.06.2024

How to Cite

Erençin, A., Başcanbaz-Tunca, G., & Taşdelen, F. (2024). Some preservation properties of MKZ-Stancu type operators. Sarajevo Journal of Mathematics, 10(1), 93–102. https://doi.org/10.5644/SJM.10.1.12

Issue

Section

Articles