Continuity conditions for the Hilbert transform on quasi-Hilbert spaces
DOI:
https://doi.org/10.5644/SJM.10.1.14Keywords:
Banach space, Gâteaux-differentiable norm, generalized inner product, group of operators, Hilbert transformAbstract
We give necessary and sufficient conditions for the continuity of the Hilbert transform on complex quasi-Hilbert spaces, i.e. on complex, reflexive, strictly convex Banach spaces with Gâteaux-differentiable norm and with generalized inner product.
Downloads
References
S. Ishikawa, Hilbert transforms on one-parameter groups of operators, Tokyo, J. Math., 9 (1986), 383--393.
M. Radić and F. Vajzović, On the bounded cosine operator function in Banach space, Mat. Vesnik, 39 (1987), 187--204.
A. Šahović and F. Vajzović, Cosine operator functions and Hilbert transforms, NSJOM, 35 (2) (2005), 41--55.
A. Šahović and F. Vajzović, A spectrality condition for infinitesimal generators of cosine operator functions, Mat. Vesnik, 60 (2008), 193--206.
R.A. Tapia, A characterization of inner product spaces, Proc. Amer. Math. Soc., 41 (1973), 569--574.
F. Vajzović, On the cosine operator function, Glasnik Mat., 22 (42) (1987), 381--406.
F. Vajzović and A. Šahović, Cosine operator functions and Hilbert transforms II, Proc. III Congress of Mathemataticians of Macedonia, Struga, Macedonia (2005), 347--356.