A Note on General Radicals of Paragraded Ringsa Note on General Radicals of Paragraded Rings
DOI:
https://doi.org/10.5644/SJM.12.3.05Keywords:
Paragraded rings and modules, Special and normal paragraded radicalsAbstract
We discuss the general theory of radicals of paragraded rings, establish that the ADS-Theorem holds, and characterize paragraded normal radicals. It is known that any special radical of a ring can be described by the appropriate class of modules over that ring. In this note we show that all special paragraded radicals of paragraded rings can be described by the appropriate class of their paragraded modules.
* This paper was presented at the International Scientific Conference Graded structures in algebra and their applications, dedicated to the memory of Prof. Marc Krasner, IUCDubrovnik, Croatia, September, 22-24, 2016.
Downloads
References
R. Anderson, N. Divinsky and A. Sulinski, Hereditary radicals in associative and alternative rings, Canad. J. Math., 7 (1965), 594-603.
V. A. Andrunakievich and Yu. M. Ryabuhin, Special modules and special radicals, Dokl. An. SSSR, 147 (6) (1962), 1274–1277.
I. N. Balaba, Special radicals of graded rings, Bul. Acad. S¸tiint¸e Mold. Mat,. 44 (1) (2004), 26–33.
H. Fang and P. Stewart, Radical theory for graded rings, J. Austral. Math. Soc. (Series A), 52 (1992), 143–153.
B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Pure and Applied Mathematics 261, Marcel Dekker 2
E. Halberstadt, Th´eorie artinienne homog`ene des anneaux gradu´es `a grades non commutatifs r´eguliers, PhD Thesis, University Piere and Marie Curie, Paris, 1971.
E. Ili´c-Georgijevi´c and M. Vukovi´c, The Wedderburn–Artin Theorem for paragraded rings, Fundam. Prikl. Mat., 19 (6) (2014), 125–139.
E. Ili´c-Georgijevi´c and M. Vukovi´c, A note on radicals of paragraded rings, this issue 307–316.
M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules) I, Proc. Japan Acad., Ser, A, 62 (9) (1986), 350–352.
M. Krasne and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules) II, Proc. Japan Acad., Ser, A, 62 (10) (1986), 389–391.
M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules) III, Proc. Japan Acad., Ser, A, 63 (1) (1987), 10–12.
M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules), Queen’s Papers in Pure and Applied Mathematics, No. 77, Queen’s University, Kingston, Ontario, Canada 1987.
C. N˘ast˘asescu and F. Van Oystaeyen, Methods of Graded Rings, Lect. Notes Math., 1836, Springer, 2004.
A. D. Sands, On normal radicals, J. London Math. Soc., 11 (1975), 361–365.
M. Vukovi´c, Structures gradu´ees et paragradu´ees, Prepublication de l’Institut Fourier, Universit´e de Grenoble I, No. 536 (2001), pp. 1-40.
M. Vukovi´c and E. Ili´c-Georgijevi´c, Paragraded rings and their ideals, Fundam. Prikl. Mat., 17 (4) (2012), 83–93, J. Math. Sci., New York, 191, No. 5 (2013), 654–660.