Spaces of Ultradistributions of Beurling Type Over $\boldsymbol{\mathbb{R}^d_+}$ Through Laguerre Expansions
DOI:
https://doi.org/10.5644/SJM.12.3.11Keywords:
Spaces of ultradistributions of Beurling type over $\mathbb{R}^d_ $, Laguerre series expansions, Schwartz kernel theoremAbstract
In this paper we define the spaces of ultradistributions of Beurling type over $\mathbb{R}^d_+$ and their dual spaces. Characterization of the spaces is given by the Laguerre series expansions and the growth rate of the corresponding Fourier-Laguerre coefficients. As a consequence of these characterizations, we obtain a deep insight into their topological structure and we prove the Schwartz kernel theorems.
* This paper was presented at the International Scientific Conference Graded structures in algebra and their applications, dedicated to the memory of Prof. Marc Krasner, IUCDubrovnik, Cratia, September, 22-24, 2016.
Downloads
References
A. J. Duran, Laguerre expansions of tempered distributions and generalized functions, J. Math. Anal. Appl., 150 (1990), 166–180.
A. J. Duran, Gel’fand-Shilov spaces for the Hankel transform, Indag. Math., 3 (1992), 137–151.
A. J. Duran, Laguerre expansions of Gel’fand-Shilov spaces, J. Approx. Theory, 74 (1993), 280–300.
I. M. Gel’fand and G. E. Shilov, Les Distributions, Vol. 2, Dunod, Paris, 1965.
S. Jakšić and B. Prangoski, Extension theorem of Whitney type for $S(RR_+^d)$ by the use of the Kernel theorem, Publ. Inst. Math. Beograd, 99 (113)(2016), 59--65.
S. Jakšić, S. Pilipović and B. Prangoski, G-type spaces of ultradistributions over $RR_+^d$ and the Weyl pseudo-differential operators with radial symbols, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., doi: 10.1007/s13398-016-0313-3.
S. Jakšić, S. Maksimović, S. Pilipović and B. Prangoski, Relations between Hermite and Laguerre expansions of ultradistributions over $RR^d$ and $RR^d_+$, J. Pseudo-Differ. Oper. Appl., doi: 10.1007/s11868-016-0171-y.
G. K¨othe, Topological Vector Spaces I, Vol.I, Springer-Verlag, New York Inc., 1969.
G. K¨othe, Topological Vector Spaces II, Vol.II, Springer-Verlag, New York Inc., 1979.
S. Pilipovic, On the Laguerre expansions of generalized functions, C. R. Math. Rep. Acad. Sci. Canada, 11 (1989), 23–27.
F. Tr´eves, Topological Vector Spaces, Distributions and Kernels, Dover Publications, New York, 1995.
M. W. Wong, Weyl Transform, Springer-Verlag, New York, 1998.
A. I. Zayed, Laguerre series as boundary values, SIAM J. Math. Anal., 13 (1982), 263–279.