Graded Structures and Differential Operators on Nearly Holomorphic and Quasimodular Forms on Classical Groups

Authors

  • Alexei Panchishkin Institut Fourier, Universit´e Grenoble Alpes 100, Gi`eres, France

DOI:

https://doi.org/10.5644/SJM.12.3.12

Keywords:

Graded structures, automorphic forms, classical groups, p-adic L-functions, differential operators, non-archimedean weight spaces, quasi-modular forms, Fourier coefficients

Abstract

We wish to use Krasner graded and Krasner-Vukovi´paragraded structures on differential operators and quasimod-ular forms on classical groups and show that these structures provide a tool to construct p-adic measures and p-adic L-functions on the corre-sponding non-archimedean weight spaces.

An approach to constructions of automorphic L-functions on unitary groups and their p-adic analogues is presented. For an algebraic group G over a number field K these L functions are certain Euler products L(s, π, r, χ).

We present a method using arithmetic nearly-holomorphic forms and general quasi-modular forms, related to algebraic automorphic forms. It gives a technique of constructing p-adic zeta-functions via quasi-modular forms and their Fourier coefficients.

* This paper was presented at the International Scientific Conference Graded structures in algebra and their applications, dedicated to the memory of Prof. Marc Krasner, IUCDubrovnik, Cratia, September, 22-24, 2016.

Downloads

Download data is not yet available.

References

Y. Amice, Les nombres p-adiques, 1975, PUF, Collection SUP, p.189.

Y. Amice and J. V´elu, Distributions p-adiques associ´ees aux s´eries de Hecke, Journ´ees Arithm´etiques de Bordeaux (Conf. Univ. Bordeaux, 1974), Ast´erisque no. 24/25, Soc. Math. France, Paris 1975, pp. 119–131.

S. B¨ocherer, Uber die Funktionalgleichung automorpher ¨ L–Funktionen zur Siegelscher Modulgruppe. J. Reine Angew. Math., 362 (1985), 146–168.

Siegfried Boecherer, Nagaoka and Shoyu, On p-adic properties of Siegel modular forms, in: Automorphic Forms, Research in Number Theory from Oman, Springer Proceedings in Mathematics and Statistics 115. Springer 2014, see also arXiv:1305.0604 [math.NT].

S. B¨ocherer and A. A. Panchishkin, p-adic Interpolation of Triple L-Functions: Analytic Aspects. In: Automorphic Forms and L-functions II: Local Aspects–David Ginzburg, Erez Lapid, and David Soudry, Editors, AMS, BIU, 2009, 313 pp.; pp.1-41.

S B¨ocherer and A. A. Panchishkin, Higher twists and higher Gauss sums, Vietnam J. Math., 39 (3) (2011), 309–326.

S. B¨ocherer and C. -G. Schmidt, p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier, 50 (5) (2000), 1375–1443.

M. Courtieu and A. A.Panchishkin, Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms, Lect. Notes Math., 1471, Springer-Verlag, 2004 (2nd augmented ed.)

Ellen E. Eischen, p-adic Differential Operators on Automorphic Forms on Unitary Groups, Ann. Inst. Fourier, 62 (1) (2012), 177–243.

Ellen E. Eischen, Michael Harris, Jian-Shu Li and Christopher M. Skinner, p-adic L-functions for unitary groups, arXiv:1602.01776v3 [math.NT].

S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-functions, Academic Press, New York, 1988.

S. S. Gelbart, I. I. Piatetski-Shapiro and S. Rallis, Explicit constructions of automorphic L-functions. Springer-Verlag, Lect. Notes Math., 1254 (1987), 152p.

T. Ichikawa, Vector-valued p-adic Siegel modular forms, J. Reine Angew. Math., DOI 10.1515/ crelle-2012-0066.

T. Ichikawa, Arithmeticity of vector-valued Siegel modular forms in analytic and padic cases, Arxiv: 1508.03138v2 [MathNT].

N. M. Katz, p-adic interpolation of real analytic Eisenstein series, Ann. Math., 104 (1976), 459–571.

Toshiyuki Kikuta and Shoyu Nagaoka, Note on mod p property of Hermitian modular forms, arXiv:1601.03506 [math.NT].

Neal Koblitz, p-adic Analysis. A Short Course on Recent Work, Cambridge Univ. Press, 1980

M. Krasner, Prolongemcnt analytique uniforme et multiforme, Collogue C.N.R.S. No. 143, Clermont-Ferrand, 1963, Paris, Ed. C.N.R.S., 1966, p. 97-141.

M. Krasner, Rapport sur le prologement analytique dans les corps values complete par la methode des e1ements analytiques quasiconnexes, Bull. Soc. Math. France Mem., 39-40 (1974), 131–254.

M. Krasner, Anneaux gradu´es g´en´eraux, Colloque d’Alg´ebre Rennes, 1980, 209–308.

M. Krasner and L. Kaloujnine, Produit complet des groupes de permutations et problme d’extension de groupes II , Acta Sci. Math. Szeged, 14 (1951), p. 39-66 et 69-82.

M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules), Queen’s Papers in Pure and Applied Mathematics, 77, Queen’s University, Kingston, Ontario, Canada, 1987.

Serge Lang, Introduction to Modular Forms. With appendixes by D. Zagier and Walter Feit, Springer-Verlag, Berlin, 1995.

B. Mazur, J. Tate and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84 (1) (1986), 1–48.

A. A. Panchishkin, Motives over totally real fields and p-adic L-functions, Ann. Inst. Fourier (Grenoble), 44 (4) (1994), 989–1023.

A. A. Panchishkin, A new method of constructing p-adic L-functions associated with modular forms, Mosc. Math. J., 2 (2) (2002), 1–16.

A. A. Panchishkin, Two variable p-adic L functions attached to eigenfamilies of positive slope, Invent. Math., 154 (3) (2003), 551–615.

A. A. Panchishkin, Families of Siegel modular forms, L-functions and modularity lifting conjectures, Israel J. Math., 185 (2011), 343–368.

A. Scholl, An introduction to Kato’s Euler systems, Galois representations in arithmetic algebraic geometry (Durham, 1996), 379–460, London Math. Soc. Lect. Note Ser., 254, Cambridge Univ. Press, Cambridge, 1998.

J.–P. Serre, Formes modulaires et fonctions zˆeta p-adiques, Lect. Notes Math., 350 (1973), 191–268.

G. Shimura, Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82 (Amer. Math. Soc., Providence, 2000).

C. Skinner and E. Urban, The Iwasawa Main Cconjecture for GL(2). http://www.math.jussieu.fr/~urban/eurp/MC.pdf.

Eric Urban, Nearly Overconvergent Modular Forms, Iwasawa Theory 2012, Contributions in Mathematical and Computational Sciences, Volume 7, 2014, pp 401–441, http://link.springer.com/chapter/10.1007/978-3-642-55245-8 14.

M. Vukovi´c, Structures gradu´ees et paragradu´ees, Pr´epublication de l’Institut Fourier, No. 536, (2001), https://www-fourier.ujf-grenoble.fr/sites/default/files/ref 536.pdf.

H. Yoshida, Review on Goro Shimura, Arithmeticity in the theory of automorphic forms [31], Bull. Am. Math. Soc., New Ser., 39, (3) (2002), 441–448.

S. Zemel, On quasimodular forms, almost holomorphic modular forms, and the vectorvalued modular forms of Shimura, arXiv:1307.1997 (2013).

Downloads

Published

30.05.2024

How to Cite

Panchishkin, A. (2024). Graded Structures and Differential Operators on Nearly Holomorphic and Quasimodular Forms on Classical Groups. Sarajevo Journal of Mathematics, 12(2), 401–417. https://doi.org/10.5644/SJM.12.3.12

Issue

Section

Articles