Quasimodular Siegel Modular Forms as P-Adic Modular Forms

Authors

  • Siegfried Böcherer Mathematisches Institut, Universität Mannheim, Mannheim, Germany

DOI:

https://doi.org/10.5644/SJM.12.3.13

Keywords:

Siegel modular forms, quasimodular forms, differential operators, Rankin-Cohen brackets, p-adic modular forms

Abstract

There is a sophisticated theory of nearly holomorphic Siegel modular forms by Shimura. Using previous results by Nagaoka and myself on Rankin-Cohen operators and theta-operators we will present a proof that quasimodular forms (defined as constant terms or as holomorphic part of a nearly holomorphic Siegel modular form) are always p-adic.

* This paper was presented at the International Scientific Conference Graded structures in algebra and their applications, dedicated to the memory of Prof. Marc Krasner, IUCDubrovnik, Croatia, September, 22-24, 2016.

Downloads

Download data is not yet available.

References

S. B¨ocherer and C.-G. Schmidt, p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier, 50, (2000), 1375–1443.

S. B¨ocherer, Vector-valued Siegel modular forms of degree n arising from scalar valued forms of higher degree, in preparation.

S. B¨ocherer and S. Nagaoka, On mod p properties of Siegel modular forms, Math. Ann., 338 (2007), 421–433.

S. B¨ocherer and S. Nagaoka, On p-adic properties of Siegel modular forms, in: Automorphic Forms, Research in Number theory from Oman, Springer 2014.

E. Eischen, M. Harris, J.-S. Li and C. Skinner, p-adic L-functions for unitary groups, Arxiv: 1602.01776v3.

E. Freitag, Siegelsche Modulfunktionen, Springer 1983.

P. B. Garrett, On the arithmetic of Hilbert-Siegel cusp forms: Petersson inner products and Fourier coefficients, Inv. Math., 107 (1992), 453–481.

E. Hecke, Theorie der Eisensteinschen Reihen h¨oherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Mathematische Werke No. 24.

T. Ibukiyama, On differential operators on automorphic forms and invariant pluriharmonic polynomials, Comment. Math. Univ. St. Pauli, 48 (1999), 103–118.

T. Ichikawa, Arithmeticity of vector-valued Siegel modular forms in analytic and padic cases, Arxiv: 1508.03138v2.

H. Maaß, Siegel’s modular forms and Dirichlet series, Lect. Notes Math., 216 (1971).

S. Mizumoto, Nearly holomorphic Eisenstein liftings, Abh. Math. Semin. Univ. Hamb., 67 (1997), 173–194.

A. A. Panchishkin, Graded structures and differential operators on nearly holomorphic and quasimodular forms on classical groups, this issue 401–417.

J.-P. Serre, Formes modulaires et fonctions zeta p-adique, in: Modular Forms of One Variable III, Lect. Notes Math., 350 (1973).

G. Shimura, The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., 29 (1976), 783–804

G. Shimura, Arithmeticity of the special values of various zeta functions and the periods of abelian integral, Sugaku Expositions, 8 (1995), 17–38.

G. Shimura, Arithmeticity in the Theory of automorphic Forms, AMS 2000.

D. Zagier, Elliptic modular forms and their applications, in: The 1-2-3 of modular forms, Springer 2008.

S. Zemel, On quasimodular forms, almost holomorphic modular forms, and the vectorvalued modular forms of Shimura, ArXiv:1307.1997 (2013).

Downloads

Published

30.05.2024

How to Cite

Böcherer, S. (2024). Quasimodular Siegel Modular Forms as P-Adic Modular Forms. Sarajevo Journal of Mathematics, 12(2), 419–428. https://doi.org/10.5644/SJM.12.3.13

Issue

Section

Articles