Order, Type and Cotype of Growth for p-adic Entire Function

Authors

  • Alain Escassut Laboratoire de Math´ematiques, UMR 6620, Unversit´e Blaise Pascal, Aubiere Cedex, France
  • Kamal Boussaf Laboratoire de Math´ematiques, UMR 6620, Unversit´e Blaise Pascal, Aubiere Cedex, France
  • Abdelbaki Boutabaa Laboratoire de Math´ematiques, UMR 6620, Unversit´e Blaise Pascal, Aubiere Cedex, France

DOI:

https://doi.org/10.5644/SJM.12.3.14

Keywords:

p-adic entire functions, growth of entire functions, order, type and cotype of growth

Abstract

Let $\K$ be a complete ultrametric algebraically closed field and let ${\cal A}(\K)$ be the $\K$-algebra of entires functions on $\K$. For an $f\in {\cal A}(\K)$, similarly to complex analysis, one can define the order of growth as $\rho(f)=\dsp{\limsup_{r\to +\infty}{\log(\log(|f|(r))\over \log r}}$. When $\rho(f)\neq 0, +\infty$, one can define the type of growth as $\sigma(f)=\dsp{\limsup_{r\to +\infty}{\log(|f|(r))\over r^{\rho(f)}}}$. But here, we can also define the cotype of growth as $\psi(f)=\dsp{\limsup_{r\to +\infty}{q(f,r)\over r^{\rho(f)}}}$ where $q(f,r)$ is the number of zeros of $f$ in the disk of center $0$ and radius $r$. Then we have $\rho(f)\sigma(f)\leq \psi(f)\leq e\rho(f)\sigma(f)$. Moreover, if $\psi$ or $\sigma$ are veritable limits, then $\rho(f)\sigma(f)= \psi(f)$ and this relation is conjectured in the general case. Many other properties are examined concerning $\rho(f),\ \sigma(f),\ \psi(f)$. Particularly, we prove that if an entire function $f$ has finite order, then $\dsp{f'\over f^2}$ takes every value infinitely many times and applications are shown to branched values of meromorphic functions.

* This paper was presented at the International Scientific Conference Graded structures in algebra and their applications, dedicated to the memory of Prof. Marc Krasner, IUCDubrovnik, Croatia, September, 22-24, 2016.

Downloads

Download data is not yet available.

References

J. P. Bezivin, K. Boussaf and A. Escassut, Zeros of the derivative of a p-adic meromorphic function, Bulletin des Sciences Math´ematiques, 136 (8) (2012), 839–847.

J. P. Bezivin, K. Boussaf and A. Escassut, Some new and old results on zeros of the derivative of a p-adic meromorphic function, Contemp. Math., Amer. Math. Soc., 596 (2013), 23–30.

K. Boussaf, A. Escassut and J. Ojeda, Primitives of p-adic meromorphic functions, Contemp. Math., 551 (2011), 51–56

K. Boussaf, A. Boutabaa and A. Escassut, Growth of p-adic entire functions and applications, Houston J. Math., 40 (3) (2014), 715–736.

K. Boussaf, A. Escassut and J. Ojeda. Growth of complex and p-adic meromorphic functions and branched small functions, Bull. Belg. Math. Soc. - Simon Stevin, (2016).

A. Boutabaa, Theorie de Nevanlinna p-adique, Manuscripta Math., 67 (1990), 251–269.

K. S. Charak, Value distribution theory of meromorphic functions, Math. Newsl., 18 (4) (2009), 1–35.

A. Escassut, Analytic Elements in p-adic Analysis. World Scientific Publishing Co. Pte. Ltd. Singapore, (1995).

A. Escassut, p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis, p. 42- 138. Math. Monogr., Series 11. Science Press.(Beijing 2008).

A. Escassut, Value Distribution in p-adic Analysis. World Scientific Publishing Co. Pte. Ltd. Singapore, (2015).

A. Escassut and J. Ojeda, Exceptional values of p-adic analytic functions and derivative, Complex Var. Elliptic Equ., 56 (1-4) (2011), 263–269.

A. Escassut and J. Ojeda, Branched values and quasi-exceptional values for p-adic mermorphic functions, Houston J. Math., 39 (3) (2013), 781–795.

A. Escassut and J. Ojeda, The p-adic Hayman conjecture when n = 2, Complex Var. Elliptic Equ., 59 (10) (2014), 1452–1455.

P. C. Hu and C. C. Yang, Meromorphic Functions over non-Archimedean Fields, Kluwer Academic Publishers, (2000).

M. Krasner, Prolongement analytique uniforme et multiforme dans les corps valu´es complets: ´el´ements analytiques, pr´eliminaires du th´eeor`eme dunicit´e. CRAS Paris A, 239 (1954), 468–470.

M. Krasner Prolongement analytique uniforme et multiforme dans les corps valu´es complets, Les tendances g´eom´etriques en alg`ebre et th´eorie des nombres, ClermontFerrand.

J. Ojeda, On Hayman’s Conjecture over a p-adic field, Taiwanese J. Math., 12 (9) (2008), 2295–2313.

Lee A. Rubel, Entire and Meromorphic Functions, Springer-Verlag, New York, (1996).

Downloads

Published

30.05.2024

How to Cite

Escassut, A., Boussaf, K., & Boutabaa, A. (2024). Order, Type and Cotype of Growth for p-adic Entire Function. Sarajevo Journal of Mathematics, 12(2), 429–446. https://doi.org/10.5644/SJM.12.3.14

Issue

Section

Articles