An Introduction to Implicative Semigroups With Apartness
DOI:
https://doi.org/10.5644/SJM.12.2.03Keywords:
Constructive mathematics, semigroup with apartness, antiordered semigroups, implicative semigroups, ordered anti-filterAbstract
The setting of this research is Bishop's constructive mathematics. Following ideas of Chan and Shum, exposed in their famous paper "Homomorphisms of implicative semigroups", we discuss the structure of implicative semigroups on sets with tight apartness. Moreover, we use anti-orders instead of partial orders. We study concomitant issues induced by existence of apartness and anti-orders giving some specific characterizations of these semigroups. In addition, we introduce the notion of anti-filter in implicative semigroups and give some equivalent conditions that the inhabited real subset of an implicative semigroup is an ordered anti-filter.
Downloads
References
K. Bang and K. S. So, Extended special sets in implicative semigroups, Commun. Korean Math. Soc., 22 (1) (2007), 9–14.
M. A. Baroni, Constructive Order Completeness, Report UCDMS 2004/12, University of Canterbury, Christchurch, New Zealand.
M. J. Beeson, Foundations of Constructive Mathematics, Springer, Berlin, 1985.
E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
E. Bishop and D. S. Bridges, Constructive Analysis, Grundlehren der mathematischen Wissenschaften 279, Springer, Berlin, 1985.
G. Birkhoff, Lattice Theory, 3rd ed., American Mathematical Society Colloquium Publications, vol. 25, American Mathematical Society, Rhode Island, 1967.
T. S. Blyth, Pseudo-residuals in semigroups, J. London Math. Soc., 40 (1965), 441–454.
D. S. Bridges and F. Richman, Varieties of Constructive Mathematics, London Mathematical Society Lecture Notes, No. 97, Cambridge University Press, Cambridge, 1987.
D. S. Bridges and L. S. Vita, Techniques of Constructive Analysis, Springer, New York 2006.
M. W. Chan and K. P. Shum, Homomorphisms of implicative semigroups, Semigroup Forum, 46 (1) (1993), 7–15.
S. Crvenkovi´c, M. Mitrovi´c and D. A. Romano, Semigroups with Apartness, Math. Logic Quart., 59 (6) (2013), 407–414.
N. Greenleaf, Linear Order in Lattices: A Constructive Study, In: Rota G-C. (Ed.), Advances in Mathematics Supplementary Studies, (pp. 11-30), Academic Press, New York, 1978.
Y. B. Jun, A note on ordered filters of implicative semigroups, Bull. Korean Math. Soc., 34 (2) (1997), 185–191.
Y. B. Jun, Some results on ordered filters of implicative semigroups, Int. J. Math. Math. Sci., 26 (12) (2001), 731–735.
Y. B. Jun, J. Meng and X. L. Xin, On ordered filters of implicative semigroups, Semigroup Forum, 54 (1) (1997), 75–82.
Y. B. Jun and K. H. Kim, On ideals of implicative semigroups, Int. J. Math. Math. Sci., 27 (2) (2001), 77–82.
M. Mandelkern, Constructive complete finite sets, Math. Logic Quart., (Formely: Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik), 34 (1988), 97–103.
W. C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc., 117 (1965), 128–142.
S. Negri. Sequent calculus proof theory of Intuitionistic apartness and order relations, Arch. Math. Logic, 38 (1999), 521–547.
D. A. Romano, A Note on quasi-antiorder in semigroup, Novi Sad J. Math., 37 (1) (2007), 3–8.
D. A. Romano, An isomorphism theorem for anti-ordered sets, Filomat, 22 (1) (2008), 145–160.
D. A. Romano, On semilattice-ordered semigroups. A constructive point of view, Sci. Stud. Res., Ser. Math. Inform., 21 (2) (2011), 117–134.
D. A. Romano, On Quasi-antiorder relation on semigroups, Mat. Vesn., 64 (3) (2012), 190–199.
A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction, North-Holland, Amsterdam, 1988.
J. von Plato, Positive lattices, In: P.Schuster, U.Berger and H.Osswald (Eds.). Reuniting the Antipodes-Constructive and Nonstandard Views of the Continuum, (pp. 185-197), Kluwer Academic Publishers, Dordrecht, 2001.