On the spaces of Fibonacci difference absolutely $p$-summable, null and convergent sequences

Authors

  • Metin Başarir Sakarya Universitesi, Fen-Edebiyat Fak¨ultesi Matematik B¨ol¨um¨u Esentepe Kamp¨us¨u, Sakarya, T¨urkiye
  • Feyzi Başar Kısıklı Mah. Alim Sok. Alim, Usk¨udar, Istanbul, T¨urkiye
  • Emrah Evren Kara D¨uzce Universitesi, Fen-Edebiyat Fak¨ultesi, Matematik B¨ol¨um¨u, Konuralp Yerle¸skesi, D¨uzce, T¨urkiye

DOI:

https://doi.org/10.5644/SJM.12.2.04

Keywords:

Fibonacci numbers, sequence spaces, difference matrix, alpha, beta and gamma duals, matrix transformations

Abstract

Let $0<p<1$. In the present paper, as the domain of the band matrix $\widehat{F}$ defined by the Fibonacci sequence in the classical sequence spaces $\ell_{p}$, $c_{0}$ and $c$, we introduce the sequence spaces $\ell_{p}(\widehat{F})$, $c_{0}(\widehat{F})$ and $c(\widehat {F})$, respectively. Also, we give some inclusion relations and construct the bases of the spaces $c_{0}(\widehat{F})$ and $c(\widehat{F})$. Finally, we compute the alpha, beta, gamma duals of these spaces and characterize the classes $(\ell_{p}(\widehat{F}),\mu)$ of infinite matrices with $\mu\in\{\ell_{\infty},c,c_{0}\}$.

Downloads

Download data is not yet available.

Downloads

Published

30.05.2024

How to Cite

Başarir, M., Başar, F., & Kara, E. E. (2024). On the spaces of Fibonacci difference absolutely $p$-summable, null and convergent sequences. Sarajevo Journal of Mathematics, 12(2), 167–182. https://doi.org/10.5644/SJM.12.2.04

Issue

Section

Articles