Nonterminating Extensions of the Sears Transformation

Authors

  • Wenchang Chu Dipartimento di Matematica e Fisica, "Ennio De Giorgi" Universita'a del Salento, Lecce, Italy
  • Nadia N. Li Department of Mathematics, Zhoukou Normal University, China

DOI:

https://doi.org/10.5644/SJM.12.2.07

Keywords:

Basic hypergeometric series, The Sears transformation, The $q$-Kampé de Fériet series, The $q$-Pfaff-Saalschütz theorem

Abstract

By means of two and three term relations of $_3\phi_2$-series, we investigate the nonterminating $_4\phi_3$-series. Eight transformation formulaes into double series are established. Four of them are shown to be nonterminating extensions of the Sears transformation.

Downloads

Download data is not yet available.

References

W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.

W. Chu and C. Jia, Transformation and reduction formulae for double $q$-Clausen hypergeometric series, Math. Methods Appl. Sci., 31 (1) (2008), 1-17

W. Chu and N. N. Li, Terminating $q$-Kampé de Fériet series $Phi^{1:3;lam}_{1:2;mu}$ and $Phi^{2:2;lam}_{2:1;mu}$}, Hiroshima Math. J., 42 (2) (2012), 233-252

G. Gasper and M. Rahman, Basic Hypergeometric Series (2nd ed.), Cambridge University Press, Cambridge, 2004.

D. B. Sears, On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc., 53 (1951), 158–180.

Downloads

Published

30.05.2024

How to Cite

Chu, W., & Li, N. N. (2024). Nonterminating Extensions of the Sears Transformation. Sarajevo Journal of Mathematics, 12(2), 205–215. https://doi.org/10.5644/SJM.12.2.07

Issue

Section

Articles