Birkhoff Normal Forms, Kam Theory, Periodicity and Symmetries for Certain Rational Difference Equation With Cubic Terms

Authors

  • Mehmed Nurkanović Department of Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • Zehra Nurkanović Department of Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina

DOI:

https://doi.org/10.5644/SJM.12.2.08

Keywords:

Area preserving map, Birkhoff normal form, KAM theorem, stability, twist coefficient

Abstract

Dedicated to the memory of Professor Mahmut Bajraktarevi´c

By using the Kolmogorov-Arnold-Moser (KAM) theory, we investigate the stability of the positive elliptic equilibrium point of the difference equation $x_{n+1} = \frac{Ax_n^3 + B}{ax_{n-1}}, n=0,1,2,...$ where the parameters $A, B, a$ and the initial conditions $x_{-1},x_0$ are positive numbers. The specific feature of this difference equation is the fact that we were not able to use the invariant to prove stability or to find feasible periods of the solutions.

Downloads

Download data is not yet available.

References

A. Cima, A. Gasull and V. Manosa, Non-integrability of measure preserving maps via Lie symmetries, J. Differ. Equ., 259 (2015), 5115-5136.

D. del-Castillo-Negrete, J. M. Greene and E. J. Morrison, Area preserving nontwist maps: periodic orbits and transition to chaos, Physica D, 91 (1986), 1–23.

E. Dennete, M. R. S. Kulenovi´c and E. Pilav, Birkhoff normal forms, KAM theory and time reversal symmetry for certain rational map, Mathematics 2016, 4, 20; doi:10.3390/math4010020.

M. Gari´c-Demirovi´c, M. Nurkanovi´c and Z. Nurkanovi´c, Stability, periodicity and symmetries of certain second order fractional difference equation with quadratic terms via KAM theory, Math. Methods Appl. Sci., 2016, in print.

M. Gidea, J. D. Meiss, I. Ugarcovici and H. Weiss, Applications of KAM theory to population dynamics, J. Biol. Dyn., 5 (1)(2011), 44–63.

J. K. Hale and H. Kocak, Dynamics and Bifurcation, Springer-Verlag, New York, 1991.

S. Jaˇsarevi´c-Hrusti´c, M. R. S. Kulenovi´c, Z. Nurkanovi´c and E. Pilav, Birkhoff normal forms, KAM theory and siymmetries for certain second order rational difference equation with quadratic term, Int. J. Difference Equ., 10 (2) (2015), 181–199.

E. J. Janowski, M. R. S. Kulenovi´c and Z. Nurkanovi´c, Stability of the k-th order Lyness’ equation with a period-k coefficient, Int. J. Bifurcation Chaos Appl. Sci. Eng., 17 (2007), 143–152.

V. L. Kocic, G. Ladas, G. Tzanetopoulos and E. Thomas, On the stability of Lyness’ equation, Dyn. Contin. Discrete Impulsive Syst., 1 (1995), 245–254.

M. R. S. Kulenovi´c, Invariants and related Liapunov functions for difference equations, Appl. Math. Lett., 13 (2000), 1–8.

M. R. S. Kulenovi´c and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman and Hall/CRC, Boca Raton, London, 2002.

M. R. S. Kulenovi´c and Z. Nurkanovi´c, Stability of Lyness’ equation with period-three coeffcient, Rad. Mat., 12 (2004), 153–161.

M. R. S. Kulenovi´c and Z. Nurkanovi´c, Stability of Lyness’ equation with period-two coeficient via KAM theory, J. Concr. Appl. Math., 6 (2008), 229-245.

M. R. S. Kulenovi´c, Z. Nurkanovi´c and E. Pilav, Birkhoff normal forms and KAM theory for Gumowski-Mira equation, The Scientific World Journal, Volume 2014, Article ID 819290, 8 p.

G. Ladas, G. Tzanetopoulos and A. Tovbis, On May’s host parasitoid model, J. Difference Equ. Appl., 2 (1996), 195–204.

G. Papaschinopoulos and C. J. Schinas, Stability of a class of nonlinear difference equations, J. Math. Anal. Appl., 230 (1999), 211–2

M. Tabor, Chaos and Integrability in Nonlinear Dynamics. An Introduction, A WileyInterscience Publication, John Wiley and Sons, Inc., New York, 1989.

E. C. Zeeman, Geometric unfolding of a difference equation, Preprint, Hertford College, Oxford (1996).

Downloads

Published

30.05.2024

How to Cite

Nurkanović, M. ., & Nurkanović, Z. . (2024). Birkhoff Normal Forms, Kam Theory, Periodicity and Symmetries for Certain Rational Difference Equation With Cubic Terms. Sarajevo Journal of Mathematics, 12(2), 217–231. https://doi.org/10.5644/SJM.12.2.08

Issue

Section

Articles