Asymptotic Approximations of the Stable and Unstable Manifold of the Fixed Point of a Certain Rational Map by Using Functional Equations
DOI:
https://doi.org/10.5644/SJM.12.2.09Keywords:
Basin of attraction, competitive map, functional equation, monotonicity, stable manifold, unstable manifoldAbstract
Dedicated to the memory of Professor Mahmut Bajraktarevi´c
We find an asymptotic approximations of the stable and unstable manifolds of the saddle equilibrium solution and the period-two solutions of the following difference equation $x_{n+1} = p+x_{n-1}/x_{n}$, where the parameter $p$ is positive number and the initial conditions $x_{-1}$ and $x_0$ are positive numbers. These manifolds, which satisfy the standard functional equations of stable and unstable manifolds determine completely global dynamics of this equation.
Downloads
References
A. M. Amleh, E. A. Grove, D. A. Georgiou and G. Ladas, On the recursive sequence $x_{n+1} = alpha + frac{x_{n-1}}{x_n}$, J. Math. Anal. Appl., 233 (1999), 790–798.
J. Bekteˇsevi´c, M. R. S. Kulenovi´c and E. Pilav, Asymptotic approximations of a stable and unstable manifolds of a two-dimensional quadratic map, J. Comp. Anal. Appl., 21 (2016), 35–51.
E. Camouzis and G. Ladas, When does local asymptotic stability imply global attractivity in rational equations?, J. Difference Equ.Appl., 12 (2006), 863–885.
D. Clark and M. R. S. Kulenovi´c, A coupled system of rational difference equations, Comput. Math. Appl., 43 (2002), 849–867.
A. Brett and M. R. S. Kulenovi´c, Basins of attraction of equilibrium points of monotone difference equations, Sarajevo J. Math., 5 (2009), 211–233.
Dˇz. Burgi´c, S. Kalabuˇsi´c and M. R. S. Kulenovi´c, Non-hyperbolic dynamics for competitive systems in the plane and global period-doubling bifurcations, Adv. Dyn. Syst. Appl., 3 (2008), 229–249.
S. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, With a foreword by Robert M. May, Chapman & Hall/CRC, Boca Raton, FL, 2008.
M. Guzowska, R. Luis and S. Elaydi, Bifurcation and invariant manifolds of the logistic competition model, J. Difference Equ. Appl., 17:12 (2011), 1851–1872.
J. K. Hale and H. Kocak, Dynamics and Bifurcations, Texts in Applied Mathematics, 3. Springer-Verlag, New York, 1991.
M. R. S. Kulenovi´c and G. Ladas, Dynamics of Second Order Rational Difference Equations, Open Problems and Conjectures, Chapman& Hall/CRC Press, Boca Raton, 2001.
M. R. S. Kulenovi´c and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman and Hall/CRC, Boca Raton, London, 2002.
M. R. S. Kulenovi´c and O. Merino, Competitive-exclusion versus competitivecoexistence for systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1141-1156.
M. R. S. Kulenovi´c and O. Merino, Convergence to a Period-Two Solution for a Class of Second Order Rational Difference Equations, Difference equations, special functions and orthogonal polynomials, Proc. Tenth International Conf. Difference Equations, Munich(Germany), World Sci. Publ., Hackensack, NJ, 2007., (2007), 344–353.
M. R. S. Kulenovi´c and O. Merino, Global bifurcation for competitive systems in the plane, Discrete Contin. Dyn. Syst. B, 12 (2009), 133–149.
M. R. S. Kulenovi´c and O. Merino, Invariant manifolds for competitive discrete systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Eng., 20 (8) (2010), 2471–2486.
C. Robinson, Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1995.
H. L. Smith, Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335–357.
E. S. Thomas, A. Clark, and D. R. Wilken, A note on the geometry of invariants, J. Difference Equ. Appl., 12 (2006), 859–861.
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second edition, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003.
D. R. Wilken, E. S. Thomas, and A. S. Clark, A proof of the no rational invariant theorem, J. Difference Equ. Appl., 12 (2006), 669–675.