On an Application of Parseval's Formula to Problems of $G_\theta^\varkappa$-summability of Eigenfunction Expansion of the Laplacian Operator

Authors

  • Mirjana Vuković Academy of Sciences and Arts of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
  • Emil Ilić-Georgijević Faculty of Civil Engineering, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
  • Olivera Stevanović Synergy University, Bijeljina, Bosnia and Herzegovina

DOI:

https://doi.org/10.5644/SJM.12.2.12

Keywords:

Eigenfunction expansion, $G_\theta^\varkappa$-summability

Abstract

To the memory of deeply respected Academician Mahmut Bajraktarević

In this paper, applying Parseval's formula, we prove a $G_\theta^\varkappa$–summability analogue of Avadhani's theorem for the Riesz–summability of the eigenfunction expansion. A crucial step in our proof of this theorem was to find a function $g(x)$ that would lead us to the kernel of the $G_\theta^\varkappa$–summability, which is more complex than the kernel of the Riesz –
summability.

Downloads

Download data is not yet available.

References

G. Alexits, Problems of Orthogonal Series, Series of Monographs on Pure and Applied Mathematics, Vol. 20, Pergamon Press, Oxford, 1961.

T. V. Avadhani, On the summability of eigenfunction expansions I, J. Indian Math. Soc., XVII, 1 (1954), 9–18.

V. G. Avakumovi´c, Uber die Eigenfuktionen die Schwingungsgleichung, Publ. Inst. Math. Acad. Serbe Sci., 4 (1952), 95–96.

V. G. Avakumovi´c, Uber die Eigenwerte der Schwingungsgleichung, Math. Scand,. 4 (1956), 161–173.

K. Chandrasekharan and S. Minakshisundaram, Typical Means, Geoffrey Cumberlege, Oxford University Press, Bombay, 1952.

V. A. Iljin, Riesz means, Cesro and Poisson-Abel summability of Fourier series of eigenfunctions, (Russian), Differencialnye Uravnenija, 2 (1966), 816-827.

B. M. Levitan, On expansion in eigenfunctions of the Laplace operator, (Russian), Mat. Sb. N.S., 35 (77) (1954), 267-316.

B. M. Levitan, On differentiation of the spectral function of the Laplace operator, (Russian), Mat. Sb. N.S., 39 (81) (1956), 37-50.

M. Maravi´c, O jednom postupku zbirljivosti divergentnih redova (doktorska teza), Zbornik radova Mat. Inst. SAN, 6 (1957), 5–52.

M. Maravić, Über die $G_theta^varkappa$–Summierbarkeit der verallgemeinerten Fourier-Reihen, Publ. Inst. math. Acad. Serbe Sci., XII, (1958), 137--147.

M. Maravić, On the $G$–summability of eigenfunction expansion, Radovi–XXXVI, Odjeljenje tehničkih nauka ANUBIH, Knj. 1 (1969), 103–118.

M. Maravi´c, O $G$–sumabilnosti razvitka po sopstvenim funkcijama Laplaceova operatora, Radovi - LVIII, Odjeljenje tehniˇckih nauka ANUBIH, Knj. 5 (1977), 5–15.

M. Maravi´c, Sumabilnost razvitka po sopstvenim funkcijama Laplaceova operatora u $n$–dimenzionalnom prostoru, ANUBIH, Djela, knjiga LV, Sarajevo, 1979.

S. Minakshisundaram, Notes on Fourier-expansions I, J. London Math. Soc., (1945), 1–20.

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations II, Oxford at the Clarendon Press, 1958.

A. Zigmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, Cambridge, 1959.

G. N. Watson, A Treatise of the Theory of Bessel Functions, Cambridge, 1952.

Downloads

Published

30.05.2024

How to Cite

Vuković, M., Ilić-Georgijević, E., & Stevanović, O. (2024). On an Application of Parseval’s Formula to Problems of $G_\theta^\varkappa$-summability of Eigenfunction Expansion of the Laplacian Operator. Sarajevo Journal of Mathematics, 12(2), 267–276. https://doi.org/10.5644/SJM.12.2.12

Issue

Section

Articles