Polylogarithmic Connections With Euler Sums

Authors

  • Anthony Sofo Victoria University, Melbourne City, Victoria, Australia

DOI:

https://doi.org/10.5644/SJM.12.1.02

Keywords:

Polylogarithm function, integral representation, Lerch transcendent function, alternating harmonic numbers, combinatorial series identities, summation formulas, partial fraction approach, binomial coefficients

Abstract

Polylogarithmic functions are intrinsically connected with sums of harmonic numbers. In this paper we explore many relations and explicitly derive closed form representations of integrals of polylogarithmic functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.

Downloads

Download data is not yet available.

References

V. Adamchik and H. M. Srivastava, Some series of the zeta and related functions, Analysis, 18 (2) (1998), 131–144.

J. M. Borwein, I. J. Zucker and J. Boersma, The evaluation of character Euler double sums, Ramanujan J., 15 (2008), 377–405.

J. Choi and D. Cvijovi´c, Values of the polygamma functions at rational arguments, J. Phys. A: Math. Theor., 40 (2007), 15019–15028, Corrigendum, ibidem, 43 (2010), 239801 (1 p).

J. Choi, Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Inequal. Appl., 49 (2013), 11p.

J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comput. Modelling, 54 (2011), 2220–2234.

M. W. Coffey and N. Lubbers, On generalized harmonic number sums, Appl. Math. Comput., 217 (2010), 689–698.

G. Dattoli and H. M. Srivastava, A note on harmonic numbers, umbral calculus and generating functions, Appl. Math. Lett., 21 (2008), 686–693.

P. Flajolet and B. Salvy, Euler sums and contour integral representations, Exp. Math., 7 (1998), 15–35.

K. K¨olbig, The polygamma function $ψ (x)$ for $x = 1/4$ and $x = 3/4$, J. Comput. Appl. Math., 75 (1996), 43–46.

H. Liu and W. Wang, Harmonic number identities via hypergeometric series and Bell polynomials, Integral Transforms Spec. Funct., 23 (2012), 49–68.

I Mez˝o, Nonlinear Euler sums, Pacific J. Math., 272 (2014), 201–226.

R. Sitaramachandrarao, A formula of S. Ramanujan, J. Number Theory, 25 (1987), 1–19.

A. Sofo, Sums of derivatives of binomial coefficients, Adv. Appl. Math., 42 (2009), 123–134.

A. Sofo, Integral forms associated with harmonic numbers, Appl. Math. Comput., 207 (2009), 365–372.

A. Sofo, Integral identities for sums, Math. Commun., 13 (2008), 303–309.

A. Sofo, Computational Techniques for the Summation of Series, Kluwer Academic/Plenum Publishers, New York, 2003.

A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J., 25 (2011), 93–113.

A. Sofo, Summation formula involving harmonic numbers, Anal. Math., 379 (2011), 51–64.

A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory, 154 (2015), 144–159.

H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, London, 2001.

H. M. Srivastava and J. Choi, Zeta and q -Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.

W. Wang and C. Jia, Harmonic number identities via the Newton-Andrews method, Ramanujan J., 35 (2014), 263–285.

C. Wei and D. Gong, The derivative operator and harmonic number identities, Ramanujan J., 34 (2014), 361–371.

T. C. Wu, S. T. Tu and H. M. Srivastava, Some combinatorial series identities associated with the digamma function and harmonic numbers, Appl. Math. Lett., 13 (2000), 101–106.

D. Y. Zheng, Further summation formulae related to generalized harmonic numbers, J. Math. Anal. Appl., 335 (1) (2007), 692–706.

Downloads

Published

31.05.2024

How to Cite

Sofo, A. (2024). Polylogarithmic Connections With Euler Sums. Sarajevo Journal of Mathematics, 12(1), 17–32. https://doi.org/10.5644/SJM.12.1.02

Issue

Section

Articles