Measure Theoretic Generalization of Pečarić, Mercer and Wu-Srivastava Results
DOI:
https://doi.org/10.5644/SJM.12.1.03Keywords:
Steffensen’s inequality, Borel σ-algebra, refinements, weaker conditionsAbstract
In this paper generalizations of Steffensen’s inequality obtained by Pečari´c, Mercer and Wu-Srivastava are further extended in
a measure theoretic sense. Motivated by Wu and Srivastava’s refined and sharpened version of Mercer’s result related inequalities for positive Borel measures are obtained.
Downloads
References
P. Billingsley, Probability and Measure, 2nd edn, John Wiley & Sons, 1986.
J. Jakˇseti´c and J. Peˇcari´c, Steffensen’s inequality for positive measures, Math. Inequal. Appl., 18 (3) (2015), 1159–1170.
Z. Liu, More on Steffensen type inequalities, Soochow J. Math., 31 (3) (2005), 429–439.
P. R. Mercer, Extensions of Steffensen’s inequality, J. Math. Anal. Appl., 246 (1) (2000), 325–329.
G. Milovanovi´c and J. Peˇcari´c, The Steffensen inequality for convex function of order n, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 634–677 (1979), 97–100.
J. E. Peˇcari´c, Notes on some general inequalities, Publ. Inst. Math. (Beograd), (N. S.) 32 (46) (1982), 131–135.
J. Peˇcari´c, A. Peruˇsi´c and K. Smoljak, Mercer and Wu-Srivastava generalisations of Steffensen’s inequality, Appl. Math. Comput., 219 (21) (2013), 10548–10558.
J. Peˇcari´c, K. Smoljak Kalamir and S. Varoˇsanec, Steffensen’s and related inequalities (A comprehensive survey and recent advances), Monograhps in inequalities 7, Element, Zagreb, 2014.
J. F. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Skand. Aktuarietids, (1918), 82–97.
S. H. Wu and H. M. Srivastava, Some improvements and generalizations of Steffensen’s integral inequality, Appl. Math. Comput., 192 (2) (2007), 422–428.