Posinormality, Coposinormality, and Supraposinormality for Some Triangular Operators
DOI:
https://doi.org/10.5644/SJM.12.1.09Keywords:
posinormal operator, posispectrum, supraposinormal operator, triangular operator, factorable matrixAbstract
The range inclusion criterion for posinormality is studied in order to classify more examples of lower triangular factorable matrices as posinormal operators or not. Also, coposinormality is shown to be a hereditary property for lower triangular operators on `$l^2$, and this leads to some results involving the posispectrum. Finally, sufficient conditions are given for lower triangular factorable matrices to be supraposinormal, and an example is given of a lower triangular factorable matrix that is supraposinormal but neither posinormal nor coposinormal. The last two sections also contain more general results that apply to operators on abstract Hilbert spaces.
Downloads
References
R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc., 17 (1966), 413–415.
G. Hardy, J. E. Littlewood, and G. P´olya, Inequalities, Second Edition, Cambridge University Press, Cambridge, 1989.
M. Itoh, Characterization of posinormal operators, Nihonkai Math. J., 11 (2) (2000), 97–101.
I. H. Jeon, S. H. Kim, E. Ko, and J. E. Park, On positive-normal operators, Bull. Korean Math. Soc., 39 (1) (2002), 33–41.
C. S. Kubrusly and B. P. Duggal, On posinormal operators, Adv. Math. Sci. Appl., 17 (1) (2007), 131-147.
H. C. Rhaly Jr., p-Ces`aro matrices, Houston Math. J., 15 (1) (1989), 137–146.
H. C. Rhaly Jr., Posinormal operators, J. Math. Soc. Japan, 46 (4) (1994), 587–605.
H. C. Rhaly Jr., Remarks concerning some generalized Ces`aro operators on `$l2$, J. Chungcheong Math. Soc., 23 (3) (2010), 425–433.
H. C. Rhaly Jr., Posinormal factorable matrices whose interrupter is diagonal, Mathematica (Cluj), 53 (76) (2011), no. 2, 181–188.
H. C. Rhaly Jr., Heredity for triangular operators, Bol. Soc. Parana. Mat., (3) 31 (2013), no. 2, 231–234.
H. C. Rhaly Jr., A superclass of the posinormal operators, New York J. Math., 20 (2014), 497-506. This paper is available via http://nyjm.albany.edu/j/2014/20-28.html.
J. G. Stampfli and B. L. Wadhwa, On dominant operators, Monatsh. Math., 84 (2) (1977), 143–153.