A Note on the Jacobson Radical of a Graded Ring

Authors

  • Emil Ilić-Georgijević University of Sarajevo, Faculty of Civil Engineering, Sarajevo, Bosnia and Herzegovina

DOI:

https://doi.org/10.5644/SJM.11.2.03

Keywords:

Graded rings and modules, regular anneids and moduloids, Jacobson radical

Abstract

We prove that $J(R_e)=R_e\cap J(R),$ where $S$ is a cancellative partial groupoid with idempotent $e,$ $R=\bigoplus_{s\in S}R_s$ an Artinian $S$-graded ring inducing $S,$ $J(R)$ the Jacobson radical of $R$ and $J(R_e)$ the Jacobson radical of $R_e.$ We also prove that $J(R)$ is nil if $J(R_e)$ is nil under certain assumptions.

Downloads

Download data is not yet available.

References

M. Chadeyras, Essai d’une th´eorie noetherienne pour les anneaux commutatifs, dont la graduation est aussi g´en´erale que possible, M´emoires de la S.M.F., 22 (1970), 3–1

E. Halberstadt, Le radical d’un anneide r´egulier, C. R. Acad. Sci., Paris, S´er. A, Paris, 270 (1970), 361–363.

E. Halberstadt, Th´eorie artinienne homog`ene des anneaux gradu´es `a grades non commutatifs r´eguliers, Th`ese doct. sci. math., Arch. orig. Cent. Doc. C.N.R.S., no. 5962. Paris: Centre National de la Recherche Scientifique, 182 p. (1971).

A. V. Kelarev, Radicals of graded rings and applications to semigroup rings, Comm. Algebra, 20 (3) (1992), 681–700.

A. V. Kelarev, On groupoid graded rings, J. Algebra, 178 (1995), 391–399.

A. V. Kelarev, Ring Constructions and Applications, Series in Algebra, Vol. 9, World Scientific, 2002.

A. V. Kelarev and A. Plant, Bergman’s lemma for graded rings, Comm. Algebra, 23 (12) (1995), 4613–4624.

M. Krasner, Th´eorie ´el´ementaire des corpo´ıdes commutatifs sans torsion, S´eminaire Krasner, 1953-54, Vol. 2, expos´e no. 5, Secr´etariat Math. de la Fac. des Sc. Paris 1956.

M. Krasner, Anneaux gradu´es g´en´eraux, Colloque d’Alg´ebre Rennes, (1980), 209–308.

M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules), Queen’s Papers in Pure and Applied Mathematics, No. 77, Queen’s University, Kingston, Ontario, Canada 1987.

C. N˘ast˘asescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathematics, 1836, Springer, 2004.

L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980.

M. Vukovi´c, Structures gradu´ees et paragradu´ees, Prepublication de l’Institut Fourier, Universit´e de Grenoble I, 2001, No. 536, pp. 1–40.

M. Vukovi´c and E. Ili´c-Georgijevi´c, Paragraded Structures, a book in preparation.

Downloads

Published

03.06.2024

How to Cite

Ilić-Georgijević, E. (2024). A Note on the Jacobson Radical of a Graded Ring. Sarajevo Journal of Mathematics, 11(2), 165–170. https://doi.org/10.5644/SJM.11.2.03

Issue

Section

Articles