A Note on the Jacobson Radical of a Graded Ring
DOI:
https://doi.org/10.5644/SJM.11.2.03Keywords:
Graded rings and modules, regular anneids and moduloids, Jacobson radicalAbstract
We prove that $J(R_e)=R_e\cap J(R),$ where $S$ is a cancellative partial groupoid with idempotent $e,$ $R=\bigoplus_{s\in S}R_s$ an Artinian $S$-graded ring inducing $S,$ $J(R)$ the Jacobson radical of $R$ and $J(R_e)$ the Jacobson radical of $R_e.$ We also prove that $J(R)$ is nil if $J(R_e)$ is nil under certain assumptions.
Downloads
References
M. Chadeyras, Essai d’une th´eorie noetherienne pour les anneaux commutatifs, dont la graduation est aussi g´en´erale que possible, M´emoires de la S.M.F., 22 (1970), 3–1
E. Halberstadt, Le radical d’un anneide r´egulier, C. R. Acad. Sci., Paris, S´er. A, Paris, 270 (1970), 361–363.
E. Halberstadt, Th´eorie artinienne homog`ene des anneaux gradu´es `a grades non commutatifs r´eguliers, Th`ese doct. sci. math., Arch. orig. Cent. Doc. C.N.R.S., no. 5962. Paris: Centre National de la Recherche Scientifique, 182 p. (1971).
A. V. Kelarev, Radicals of graded rings and applications to semigroup rings, Comm. Algebra, 20 (3) (1992), 681–700.
A. V. Kelarev, On groupoid graded rings, J. Algebra, 178 (1995), 391–399.
A. V. Kelarev, Ring Constructions and Applications, Series in Algebra, Vol. 9, World Scientific, 2002.
A. V. Kelarev and A. Plant, Bergman’s lemma for graded rings, Comm. Algebra, 23 (12) (1995), 4613–4624.
M. Krasner, Th´eorie ´el´ementaire des corpo´ıdes commutatifs sans torsion, S´eminaire Krasner, 1953-54, Vol. 2, expos´e no. 5, Secr´etariat Math. de la Fac. des Sc. Paris 1956.
M. Krasner, Anneaux gradu´es g´en´eraux, Colloque d’Alg´ebre Rennes, (1980), 209–308.
M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules), Queen’s Papers in Pure and Applied Mathematics, No. 77, Queen’s University, Kingston, Ontario, Canada 1987.
C. N˘ast˘asescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathematics, 1836, Springer, 2004.
L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980.
M. Vukovi´c, Structures gradu´ees et paragradu´ees, Prepublication de l’Institut Fourier, Universit´e de Grenoble I, 2001, No. 536, pp. 1–40.
M. Vukovi´c and E. Ili´c-Georgijevi´c, Paragraded Structures, a book in preparation.