A new hybrid cyclic algorithm for two finite families of strictly asymptotically pseudocontractive mappings
DOI:
https://doi.org/10.5644/SJM.11.2.07Keywords:
Strictly asymptotically pseudocontractive mapping, cyclic algorithm, iterative approximation, hybrid algorithmAbstract
The purpose of this paper is to propose a new hybrid cyclic algorithm for two finite families of strictly asymptotically pseudocontractive mappings and to establish a strong convergence theorem to approximate common fixed point. The main result of the paper is an improvement and generalization of the well known corresponding results. It also provides an affirmative answer to an interesting problem raised by Marino and Xu [Weak and strong convergence theorem for $\kappa$-strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-349].
2010 Mathematics Subject Classification. 47H09, 47H10
Downloads
References
G. Acedo and H. K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 67 (2007), 2258–2271.
A. Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math., 22 (1975), 81–86.
O. G¨uler, On the convergence of the proximal point algorithm for convex optimization, SIAM J. Control. Optim., 29 (1991), 403-419.
B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957–961.
I. Inchan and K. Nammanee, Strong convergence theorems by hybrid method for asymptotically k−strict pseudo-contractive mapping in Hilbert space, Nonlinear Anal. Hybrid System, 3 (2009), 380–385.
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–50.
T. H. Kim and H. K. Xu, Convergence of the modified Mann iterations, Nonlinear Anal., 61 (2005), 51–60.
T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 64 (2006), 1140–1152.
T. H. Kim and H.K. Xu, Convergence of the modified Mann’s iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal., 68 (2008), 2828–2836.
Q. Liu, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., 26 (1996), 1835–1842.
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510.
G. Marino and H. K. Xu, Weak and strong convergence theorem for κ-strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl., 329 (2007), 336–349.
K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372–379.
M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Panamer. Math. J., 12 (2002), 77–88.
M. O. Osilie, A. Udomene, D. I. Igbokwe and B. G. Akuchu, Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl., 326 (2007), 1334-1345.
X. L. Qin, Y. J. Cho, S. M. Kang and M. Shang, A hybrid iterative scheme for asymptotically k−strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 70 (2009), 1902–1911.
S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274–276.
W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341 (2008), 276–286.
K. K. Tan and H. K. Xu, Fixed point iteration processess for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 122 (1994), 733–739.
B. S. Thakur, Convergence of strictly asymptotically pseudo-contractions, Thai J. Math., 5 (2007), 41–52.
C. M. Yanez and H.K. Xu, Strong convergence of the CQ method for fixed point processes, Nonlinear Anal., 64 (2006), 2400–2411.
S. S. Zhang, Strong convergence theorems for strictly asymptotically pseudocontractive mappings in Hilbert spaces, Acta. Math. Sinica, 27 (2011), 1367–1378