New Norm Inequalities of Čebyšev Type for Power Series in Banach Algebras

Authors

  • S. S. Dragomir School of Engineering & Science, Victoria University, Melbourne City, Australia; School of Computer Science & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
  • M. V. Boldea Mathematics and Statistics, Banat University of Agricultural Sciences and Veterinary Medicine, Timi¸soara, Romˆania
  • M. Megan Department of Mathematics, West University of Timi¸soara, Timi¸soara, Romˆania

DOI:

https://doi.org/10.5644/SJM.11.2.11

Keywords:

Banach algebras, power series, exponential function, resolvent function, norm inequalities

Abstract

Let $f\left( \lambda \right) =\sum_{n=0}^{\infty }\alpha _{n}\lambda ^{n}$ be a function defined by power series with complex coefficients and convergent on the open disk $D\left( 0,R\right) \subset \mathbb{C}$, $R>0$ and $x,y\in \mathcal{B}$, a Banach algebra, with $xy=yx.$

In this paper we establish some new upper bounds for the norm of the Čebyšev type difference
\begin{equation*}
f\left( \lambda \right) f\left( \lambda xy\right) -f\left( \lambda x\right)
f\left( \lambda y\right)
\end{equation*}
provide that the complex number $\lambda $ and the vectors $x,y\in \mathcal{B%}$ are such that the series in the above expression are convergent. These results complement the earlier resuls obtained by the authors. Applications
for some fundamental functions such as the exponential function and the resolvent function are provided as well.

Downloads

Download data is not yet available.

References

M. Abramowitz and I. A. Stegun, (Eds.). ”Modified Bessel Functions I and K.” §9.6 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 374-377, 1972.

S. S. Dragomir, Inequalities for the Cebyˇsev functional of two functions of selfadjoint operators in Hilbert spaces, Aust. J. Math. Anal. Appl., 6 (1) (2009), Article 7, pp. 1–58.

S. S. Dragomir, Some inequalities for power series of selfadjoint operators in Hilbert spaces via reverses of the Schwarz inequality, Integral Transforms Spec. Funct., 20 (9–10) (2009), 757–767.

S. S. Dragomir, Operator Inequalities of the Jensen, Cebyˇsev and Gr¨uss Type, Springer Briefs in Mathematics, Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.

S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics, Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1.

S. S. Dragomir, M. V. Boldea and C. Bu¸se, Norm inequalities of Cebyˇsev type for power series in Banach algebras, Preprint RGMIA Res. Rep. Coll., 16 (2013), Art.

T. Furuta, J. Mi´ci´c Hot, J. Peˇcari´c and Y. Seo, Mond-Peˇcari´c Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.

Downloads

Published

04.06.2024

How to Cite

Dragomir, S. S., Boldea, M. V., & Megan, M. (2024). New Norm Inequalities of Čebyšev Type for Power Series in Banach Algebras. Sarajevo Journal of Mathematics, 11(2), 253–266. https://doi.org/10.5644/SJM.11.2.11

Issue

Section

Articles