On Some Properties of Spectra and Essential Spectra in Banach Spaces

Authors

  • Abdelkader Dehici Laboratory of Informatics and Mathematics, University of Souk-Ahras, Souk-Ahras, Algeria

DOI:

https://doi.org/10.5644/SJM.11.2.08

Keywords:

Banach space, Spectrum, Wolf essential spectrum, Weyl essential spectrum, Fredholm operator, index

Abstract

In this paper, we study diverse properties satisfied by the spectra, Wolf and Weyl essential spectra of bounded linear operators and their links with the structures of Banach spaces.

 

2010 Mathematics Subject Classification. 47A10 47A53

Downloads

Download data is not yet available.

References

Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Vol. 50, Graduate Studies in Mathematics, Amer. Math. Soc. Providence, RI, 2002.

P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, Dordrecht, 2004.

G. Androulakis and Th. Schlumprecht, Strictly singular, non-compact operators exist on the space of Gowers and Maurey, J. London. Math. Soc., (2) 64 (2001), 1–20.

C. Apostol, The correction by compact perturbation of the singular behavior of operators, Rev. Roum. Math. Pures et Appl., 21 (1976), 155–175.

S. Argyros and R. Haydon, A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem, Acta. Math., 206 (2011), 1–54.

C. A. Berger and B. I. Shaw, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc., 79 (1973), 1193–1199.

S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974.

K. R. Davidson and D. Herrero, Decomposition of Banach spaces operators, Indiana. Univ. Math. J., 35 (1986), 333–343.

A. Dehici and R. Debbar, Some spectral properties of linear operators on exotic Banach spaces, Lobachevskii. J. Math., 33 (1) (2012), 56–67.

V. Ferenczi, Quotient hereditarily indecomposable Banach spaces, Can. J. Math., 51 (1999), 566–584.

V. Ferenczi, Hereditarily finitely decomposable Banach spaces, Stud. Math., 123 (1997), 135–149.

V. Ferenczi, A. Louveau and C. Rosendal, The complexity of classifying separable Banach spaces up to isomorphism, J. Lond. Math. Soc., 79 (2009), 323–345.

V. Ferenczi and C. Rosendal, Banach spaces without minimal subspaces, J. Func. Anal., 257 (2009), 149–193.

I. C. Gohberg, A. Markus and I. A. Feldman, Normally solvable operators and ideals associated with them, Amer. Math. Soc. Tran. Ser. 2., 61 (1967), 63–84.

M. Gonzalez, Banach spaces with small Calkin algebra, Banach Center Publ., 75 (2007), 159–170.

M. Gonzalez and J. Herrera, Spaces on which the essential spectrum of all the operators is finite, J. Oper. Theory., 53 (2005), 303–314.

T. W. Gowers, A new dichotomy for Banach spaces, Geom. Func. Anal., 6 (1996), 1083–1093.

T. W. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc., 6 (1993), 851–874.

T. W. Gowers and B. Maurey, Banach spaces with small spaces of operators, Math. Ann., 307 (1997), 543–568.

T. W. Gowers, An infinite Ramsey theorem and some Banach space dichotomies, Ann. of Math., 156 (2002), 797–833.

T. W. Gowers, A solution to Banach’s hyperplane problem, Bull. Lond. Math. Soc., 26 (1994), 523–530.

P. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, N.J, 1967.

R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.

M. I. Kadec and A. Pelczynski, Bases, lacunary sequences and complemented subspaces in the spaces Lp, Stud. Math., 21 (1962), 161–176.

R. V. Kadison and J. R. Ringrose, Fundamental of the Fheory of Operators Algebras (I), Acad. Press, 1983.

T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261–322.

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, 1977.

M. Lindner, Fredholmness and index of operators in the Wiener algebra are independent of the underlying space, J. Operators. Matrices., 2 (2008), 297–306.

V. Milman, Some properties of strictly singular operators, J. Func. Anal. Appl., 3 (1969), 77–78.

V. M¨uller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebra, Birkh¨auser Verlag, Basel, 2003.

G. J. Murphy, Lifting sets and the Calkin algebra, Glasgow. Math. J., 23 (1982), 83–84.

M. Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc., 74 (1968), 1139–1144.

M. Schechter, Principles of Functional Analysis, Second Edition, Graduate Studies in Mathematics, Vol. 36, Amer. Math. Soc., 2001.

W. G. Su and H. J. Zhong, The generalized West decomposition of operators and other compact perturbation problem, Acta. Math. Sinica., 22 (2006), 515–522.

B. S. Tsirelson, Not every Banach space contain an embedding of lp or c0, Funct. Anal. Appl., 8 (1974), 138–141.

J. I. Vladimirskii, Strictly cosingular operators, Sov. Math. Dokl., 8 (1967), 739–740.

L. Weis, On perturbations of Fredholm operators in Lp(µ)-spaces, Proc. Amer. Math. Soc., 67 (1977), 287–292.

T. West, The decomposition of Riesz operators, Proc. Lond. Math. Soc., 16 (1966), 737–752.

H. Zhong, Riesz operators on the spaces Lp(µ) have West decomposition (in chinese), Northeast. Math. J., 4 (1988), 282–288.

H. Zhong, Tsirelson’s space and West decomposition of Riesz operators on it (in chinese), Sciences in China., (Serie A) 39 (5) (1996), 491–500.

Downloads

Published

04.06.2024

How to Cite

Dehici, A. (2024). On Some Properties of Spectra and Essential Spectra in Banach Spaces. Sarajevo Journal of Mathematics, 11(2), 219–234. https://doi.org/10.5644/SJM.11.2.08

Issue

Section

Articles