A Note on Pata-Type Cyclic Contractions
DOI:
https://doi.org/10.5644/SJM.11.2.09Keywords:
Pata-type contraction, cyclic contractionAbstract
Several fixed point results are obtained for cyclic mappings satisfying contractive conditions of Pata-type. Some of them improve existing results in the literature. An example shows a possible usage of the obtained results.
2010 Mathematics Subject Classification. Primary 47H10; Secondary 47H09.
Downloads
References
M. A. Alghamdi, A. Petrusel and N. Shahzad, A fixed point theorem for cyclic generalized contractions in metric spaces, Fixed Point Theory Appl., 2012:122 (2012).
M. A. Alghamdi, A. Petrusel and N. Shahzad, Correction: A fixed point theorem for cyclic generalized contractions in metric spaces, Fixed Point Theory Appl. 2012, 2012:122, Fixed Point Theory Appl., 2013:39 (2013).
M. Chakraborty and S. K. Samanta, A fixed point theorem for Kannan-type maps in metric spaces, arXiv:1211.7331v2 [math. GN] 16 Dec 2012.
M. Chakraborty and S. K. Samanta, On a fixed point theorem for a cyclical Kannantype mapping, arXiv:1301.5050v1 [math. GN] 22 Dec 2013.
S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727–730.
Z. Kadelburg and S. Radenovi´c, Fixed point theorems for Pata-type maps in metric spaces, to appear in J. Egypt. Math. Soc., doi:10.1016/j.joems.2014.09.001.
W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (1) (2003), 79–89.
H. K. Nashine and Z. Kadelburg, Weaker cyclic (ϕ, φ)-contractive mappings with applications to integro-differential equations, Nonlinear Anal. Model. Control, 18 (2013), 427–443.
M. Pacurar, Fixed point theory for cyclic Berinde operators, Fixed Point Theory, 12 (2011), 419–428.
M. Pacurar and I. A. Rus, Fixed point theory for cyclic Φ-contractions, Nonlinear Anal., 72 (2010), 1181–1187.
V. Pata, A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., 10 (2011), 299–305,
S. Radenovi´c, Z. Kadelburg, D. Jandrli´c and A. Jandrli´c, Some results on weakly contractive maps, Bull. Iranian Math. Soc., 38 (3) (2012), 625–645.
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–290.