Absolute Tauberian Constants for Lower Triangular Matrices

Authors

  • F. Aydin Akgun Department of Mathematical Engineering, YIldiz Technical University, Esenler, Istanbul, Turkey
  • B. E. Rhoades Department of Mathematics, Indiana University, Bloomington, IN, U.S.A.

DOI:

https://doi.org/10.5644/SJM.11.2.10

Keywords:

Factorable matrices, Hausdorff matrices, Tauberian constants, weighted mean matrices

Abstract

In a recent paper [1] the authors obtained absolute Tauberian constants for the H-J generalized Hausdorff transformations, which generalized the corresponding results, obtained earlier by Sherif, for ordinary Hausdorff matrices. In this paper we obtain absolute Tauberian constants for regular lower triangular matrices with row sums one. As corollaries we obtain the corresponding results for factorable and weighted mean matrices.

 

2010 Mathematics Subject Classification. Primary: 47H10.

Downloads

Download data is not yet available.

References

F. Aydin Akgun and B. E. Rhoades, Absolute Tauberian constants for $H-J$ Hausdorff matrices, Appl. Math. Inform. Sci., 7 (4) (2013), 1405–1413.

Layla Awaad and Soroya Sherif, Absolute Tauberian constants for quasi-Hausdorff transformations, Indian J. Pure Appl. Math., 8 (3) (1977), 374–378.

I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1970.

Soroya Sherif, Absolute Tauberian constants for Ces´aro means, Trans. Amer. Math. Soc., 168 (1972), 23–241.

Soroya Sherif, Absolute Tauberian constants for Hausdorff transformations, Canadian J. Math., 26 (1) (1974), 19–26.

Downloads

Published

04.06.2024

How to Cite

Akgun, F. A., & Rhoades, B. E. (2024). Absolute Tauberian Constants for Lower Triangular Matrices. Sarajevo Journal of Mathematics, 11(2), 247–252. https://doi.org/10.5644/SJM.11.2.10

Issue

Section

Articles