A decomposition of $\boldsymbol{\delta}$-open functions

Authors

  • Miguel Caldas Departamento de Matem´atica Aplicada, Universidade Federal Fluminense, Niteroi, RJ, Brasil
  • Saeid Jafari College of Vestsjaelland, Slagelse, Denmark

DOI:

https://doi.org/10.5644/SJM.11.2.12

Keywords:

Topological space, $\delta$-open sets, $\delta$-open functions, weak $\delta$-continuity, weakly $\delta$-open functions

Abstract

In 2008, M. Caldas and G. Navalagi introduced a new class of generalized open functions called weakly $\delta$-open functions. By introducing a new type of open functions called relatively weakly $\delta$-open together with weakly $\delta$-open functions, we establish a new decomposition of $\delta$-open functions.

 

2010 Mathematics Subject Classification. 54A40, 54C10, 54D10; Secondary: 54C08

Downloads

Download data is not yet available.

References

M. Caldas and G. Navalagi, On generalizing δ-open functions, Pro Mathematica, 22 (2008), 103–121.

E. Ekici, On δ-semiopen sets and a generalization of functions, Bol. Soc. Paran. Mat., 23 (2005), 73–84.

L. L. Herrington, Some properties preserved by the almost- continuous function, Boll. Un. Mat. Ital., 10 (1974), 556–568.

M. S. El-Naschie, O. E. Rossler and I. Prigogine, Quantion Mechanics, Diffusion and Chaotic Fractals, Oxford: Elsevier Pergamon; 1995.

M. S. El-Naschie, Superstrings, knots and noncommutative geometry in $varepsilon^infty$ space, Inst. J. Theor. Phys., 37 (1998), 2935–51.

M. S. El-Naschie, On the certification of heterotic strings, M theory and $varepsilon^infty$ theory, Chaos Solitons Fractals, (2000), 2397–2408.

M. S. El-Naschie, The two-slit experement as the fundation, of E-infinity of high energy physics, Chaos, Solitons Fractals, 25 (2005), 509–514.

E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies in finite ordered sets, Topology Appl., 36 (1990), 1–17.

E. Kovalevsky and R. Kopperman, Some topology-based image processing algorithms, Ann NY. Acad. Sci., 728 (1994), 174–182.

G. Landi, An introduction to Noncommutative Spaces and Their Geometris, (lecture notes in physics), Springer-Verlag (New York), 1997.

M. Mrˇsevi´c, I. L. Reilly and M. K. Vamanamurthy, On semi-regularization properties, J. Austral, Math. Soc. (Series A), 38 (1985), 40–54.

E. L. F. Moore and T. J. Peters, Computational Topology for Geometric Design and Molecular Design, Mathematics in Industry-Challenges and Frontiers 2003, Editors: D. R. Ferguson and T. J. Peters, SIAM 2005.

Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, In: System theory, knowledge engineering and problem solving, Vol. 9., Dordrecht. Kluwer; 1991.

D. W. Rosen and T. J. Peters, The role of topology in engineering design research, Research in Engineering Design 2 (1996), 81–98.

D. A. Rose, On weak openness and almost openness, Internat. J. Math.& Math. Sci., 7 (1984), 35–40.

D. A.Rose and D. S.Jankovi´c,. Weakly closed functions and Hausdorff spaces, Math. Nachr., 130 (1987), 105–110.

N. V. Veliˇcko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103–118.

Downloads

Published

04.06.2024

How to Cite

Caldas, M., & Jafari, S. (2024). A decomposition of $\boldsymbol{\delta}$-open functions. Sarajevo Journal of Mathematics, 11(2), 267–271. https://doi.org/10.5644/SJM.11.2.12

Issue

Section

Articles