Zero-Dimensional Schemes in the Plane
DOI:
https://doi.org/10.5644/SJM.10.2.01Keywords:
Zero-dimensional scheme, plane curve, Hilbert functionAbstract
Let $Z\subset \mathbb {P}^2$ be a zero-dimensional scheme. Fix $t\in \mathbb {N}$. In this paper we study the following question: find assumptions on $Z$ and $t$ such that $h^1(\mathcal {I}_A(t)) <h^1(\mathcal {I}_Z(t))$ for all $A\subsetneq Z$ and check if $t$ does not exist for a certain class of schemes $Z$.
2010 Mathematics Subject Classification. 14N05.
Downloads
References
E. Ballico, Generalized Hamming weights of codes obtained from smooth plane curves, Afr. Mat., 24 (4) (2013), 565–569.
E. Ballico, Finite subsets of projective spaces with bad postulation in a fixed degree, Beitr. Algebra Geom., 54 (2013), 81–103.
E. Ballico and A. Bernardi, Stratification of the fourth secant variety of Veronese variety via the symmetric rank, Adv. Pure Appl. Math., 4 (2) (2013), 215–250; DOI: 10.1515/apam-2013-0015
E. Ballico and L. Chiantini, A criterion for detecting the identifiability of symmetric tensors of size three, Differ. Geom. Appl., 30 (2012), 233–237.
E. Ballico and A. Ravagnani, On the duals of geometric Goppa codes from norm-trace curves, Finite Fields Appl., 20 (2013), 30–39.
E. Ballico and A. Ravagnani, The dual geometry of Hermitian two-point codes, Discrete Math., 313 (2013), 2687–2695.
E. Ballico and A. Ravagnani, On the dual minimum distance and minimum weight of codes from a quotient of the Hermitian curve, Appl. Algebra Eng. Comm. Comput., 24 (2013), 343–354, DOI 10.1007/s00200-013-0206-z.
E. Ballico and A. Ravagnani, On the geometry of Hermitian one-point codes, J. Algebra, 397 (2014), 499–514.
A. Couvreur, The dual minimum distance of arbitrary dimensional algebraicgeometric codes, J. Algebra, 350 (1) (2012), 84–107.
E. D. Davis, $0$--dimensional subschemes of $P^2$ : new application of Castelnuovo’s function, Ann. Univ. Ferrara Sez., VII (N.S.) 32 (1986), 93–107 (1987).
G. Donati and N. Duranti, On the intersection of a Hermitian curve with a conic, Des. Codes Cryptography, (2010) 57:347360, DOI 10.1007/s10623-010-9371-2.
Ph. Ellia and Ch. Peskine, Groupes de points de $P^2$: caract`ere et position uniforme, Algebraic geometry (L’ Aquila, 1988), 111–116, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
G. M. Hana and T. Johnsen, Scroll codes, Des. Codes Cryptography, 45 (3) (2007), 365–377.
R. Hartshorne, Algebraic Geometry, Springer, 1977.
L. Gruson and Ch. Peskine, Genre des courbes de l’espace projectif, in Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977), pp. 31–59, Lecture Notes in Math., 687, Springer, Berlin, 1978.
J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence, 2012.