Existence of three solutions for a quasilinear elliptic equation involving the $p(x)$--Laplace operator
DOI:
https://doi.org/10.5644/SJM.10.2.04Keywords:
Variable exponent Lebesgue and Sobolev spaces $p(x)$-Laplacian, Neumann problem, variational approach, three solutionsAbstract
In this paper, some existence results are obtained by using a three critical point theorem based on variational principle. In that context, we verify that a quasilinear elliptic equation involving the $p(x)$-Laplace operator has at least three weak solutions under Neumann boundary condition.
2010 Mathematics Subject Classification. 35J60, 35B30, 35B40
Downloads
References
G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal., 54 (2003), 651–665.
L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, PhD, University of Frieburg, Germany, 2002.
L. Diening, P. Harjulehto, P. H¨ast¨o, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lect. Notes Math., vol. 2017, Springer-Verlag, Berlin, 2011.
X. L. Fan, J. S. Shen and D. Zhao, Sobolev embedding theorems for spaces $%W^k,p(x) }(Omega)$, J. Math. Anal. Appl., 262 (2001), 749–760.
X. L. Fan and D. Zhao, On the spaces $L^{p(x) }left( Omega right)$ and $W^{m,p(x)}left( Omega right) $, J. Math. Anal.
Appl., 263 (2001), 424–446.
X. L. Fan and S. G. Deng, Remarks on Ricci’s variatonal principle and applications to the p(x)-Laplacian equations, Nonlinear Anal., 67 (2007), 3064–3075
P. H¨ast¨o, The p(x)-Laplacian and applications, J. Anal. 15 (2007), 53–62 (Special proceedings volume).
O. Kov˘aˇcik and J. R˘akosnik, On spaces $L^{p(x)}$ and $W^{1,p(x)}$ , Czech. Math. J., 41 (1991), 592–618.
F. Li, Z. Li and Pi L. Ling, Variable exponent functionals in image restoration, Appl. Math. Comput., 216 (3) (2010), 870–882.
Q. Liu, Existence of three solutions for $p(x)$-Laplacian equations, Nonlinear Anal., 68 (2008), 2119–2127.
M. Mih˘ailescu and V. R˘adulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A., 462 (2006), 2625–2641.
M. Mih˘ailescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal., 67 (2007), 1419–1425.
B. Ricceri, On three critical points theorem, Arch. Math. (Basel), 75 (2000), 220–226.
B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401–410.
B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151–4157.
M. R˚uˇziˇcka, Electrorheological Fluids: Modeling and Mathematical Theory, Lect. Notes Math., 1748. Berlin: Springer-Verlag, 2000.
X. Shang and J. Zang, Three solutions for a pertubed Dirichlet boundary value problem involving the p-Laplacian, Nonlinear Anal., 72 (2010), 1417–1422.
X. Shi and X. Ding, Existence and multiplicity of solutions for a general $p(x)$-Laplacian Neumann problem, Nonlinear Anal., 70 (2009), 3715–3720.
D. Stancu-Dumitru, Multiplicity of solutions for anisotropic quasilinear elliptic equations with variable exponents, Bull. Belg. Math. Soc. - Simon Stevin 17 (2010) 875–889.
D. Stancu-Dumitru, Two nontrivial solutions for a class of anisotropic variable exponent problems, Taiwanese J. Math., 16 (4) (2012),1205–1219.
D. Stancu-Dumitru, Multiplicity of solutions for a nonlinear degenerate problem in anisotropic variable exponent spaces, Bull. Malays. Math. Sci. Soc., 36 (1) (2013), 117–130.