Best Proximity Point Theorems for Multi-Valued Mappings in Complete Metric Spaces

Authors

  • M.R. Yadav School of Studies in Mathematics, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh (India)
  • B.S. Thakur School of Studies in Mathematics, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh (India)
  • A.K Sharma Department of Mathematics, Seth Phoolchand College, Navapara Rajim, Dist. Raipur, Chhattisgarh (India)

DOI:

https://doi.org/10.5644/SJM.10.2.05

Keywords:

Best proximity point, multivalued mappings, cyclic contraction and complete metric space

Abstract

In this paper the concept of K-cyclic and C-cyclic contraction single-valued maps are extended to multi-valued maps with MT-functions in the frameworks of complete spaces. We show the existence of a best proximity point for such mappings in the setup of complete metric spaces. Our result extends and improves some best proximity point theorems in the literature. An example is given to support the functionality of the result.

 

2010 Mathematics Subject Classification. 41A65, 46B20, 47H10, 46J10, 46J15.

Downloads

Download data is not yet available.

References

A. Almeida, E. Karapinar and K. Sadarangani, A note on best proximity point theorems under weak P-property, Abstr. Appl. Anal., 2014, Article Id: 716825

A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpanisve mappings, Stud. Math., 171 (3) (2005), 283–293.

A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006.

E. Karapinar and I. M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci., 5 (2011), 342–353.

E. Karapinar, G. Petrusel and K. Tas, Best proximity point theorems for KT–types cyclic orbital contraction mappings, Fixed Point Theory, 13 (2) (2012), 537–546.

E. Karapinar, Best proximity points of cyclic mappings, Appl. Math. Lett., 25 (11) (2012), 1761–1766.

E. Karapinar, On best proximity point of psi-Geraghty contractions, Fixed Point Theory Appl., 2013, 2013:200.

E. Karapinar, V. Pragadeeswarar and M. Marudai, Best proximity point for generalized proximal weak contractions in complete metric space, J. Appl. Math., (2014) Article No: 150941.

E. Karapinar and B. Samet, A note on psi-Geraghty type contractions, Fixed Point Theory Appl., 2014, 2014:26.

H. Aydi, E. Karapinar, I. M. Erhan and P. Salimi, Best proximity points of generalized almost- Geraghty contractive non-self mappings, Fixed Point Theory Appl., 2014, 2014:32.

H. K. Pathak, Y. J. Cho and S. M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc., 34 (1997), 247–257.

JR. S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488.

J. J. Nieto and R. Rodrguez-Lpez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239.

M. De La Sen, E. Karapinar, On best proximity points of generalized semi-cyclic impulsive self-mappings. Applications to impulsive differential and difference equations, Abstr. Appl. Anal., (2013) Article Id: 505487.

M. Jleli, E. Karapinar and B. Samet, On best proximity points under the P- property on partially ordered metric spaces, Abstr. Appl. Anal., 2013 Article Id: 150970.

N. Bilgili, E. Karapinar and K. Sadarangani, A generalization for the best proximity point of Geraghty-contractions, J. Inequal. Appl., (2013), 2013:286.

R. Kannan, Some results on fixed points -II, Bull. Calcutta Math. Soc., 60 (1969), 71–76.

R. P. Agarwal, M. A. EL-Gebeily and D. ORegan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109–116.

S. K. Chatterjee, Fixed point theorems, Com. Ren. Acad. Bulgaria Sci., 25 (1972), 727-730.

S. Reich, Fixed points of contractive functions, Boll. (in. Mar. Ital., 5 (1972), 26–42.

S. Reich, Some fixed point problems, Atri. Acad. Nuz. Lincei, 57 (1974). 194–198.

S. Sessa and Y. J. Cho, Compatible mappings and a common fixed point theorem of Chang type, Publ. Math. (Debrecen), 43 (1993), 289–296.

W. S. Du, Some new results and generalizations in metric fixed point theory, Nonlinear Anal., Theory Methods Appl., 73 (2010), 1439–1446.

W. S. Du, Nonlinear contractive conditions for coupled cone fixed point theorems, Fixed Point Theory Appl. 2010, Article ID 190606 (2010). doi:10.1155/2010/190606.

W. S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topol. Appl., 159 (2012), 49–56.

W. S. Du and H. Lakzian, Nonlinear conditions for the existence of best proximity points, J. Inequal. Appl., 2012, 2012:206.

W. Sintunavarat, Y. J. Cho and P. Kumam, Common fixed point theorems for cdistance in ordered cone metric spaces, Comput. Math. Appl., 62 (2011) 1969–1978.

Y. J. Cho, Fixed points for compatible mappings of type (A), Math. Jap., 18 (1993), 497–508.

Downloads

Published

04.06.2024

How to Cite

Yadav, M., Thakur, B., & Sharma, A. (2024). Best Proximity Point Theorems for Multi-Valued Mappings in Complete Metric Spaces. Sarajevo Journal of Mathematics, 10(2), 185–195. https://doi.org/10.5644/SJM.10.2.05

Issue

Section

Articles