Analytic Continuation of the Extended Hurwitz-Lerch Zeta Function

Authors

  • Ram K. Saxena Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur, Rajasthan India
  • Tibor K. Pogány Faculty of Maritime Studies, University of Rijeka, Rijeka, Croatia

DOI:

https://doi.org/10.5644/SJM.09.2.01

Keywords:

Generalized Hurwitz-Lerch Zeta function, Fox--Wright $\Psi^*$-function, hypergeometric ${}_pF_q$ function

Abstract

The object of this paper is to investigate the analytic continuation and asymptotic expansions for families of the generalized Hurwich-Lerch Zeta functions defined by Srivastava et al. The result obtained is of general character and includes, as special cases, in the same fashion results about the Gauss hypergeometric function, the generalized hypergeometric function and for Fox-Wright function given earlier by Kilbas et al. and others.

 

2010 Mathematics Subject Classification. 11M35, 33C20, 33C60

Downloads

Download data is not yet available.

References

A. Erd´elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw–Hill Book Company, New York, Toronto and London, 1953.

M. Garg, K. Jain and S. L. Kalla, On generalized Hurwitz–Lerch Zeta distributions, Appl. Appl. Math., 4 (1) (2009), 26–39.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York

A. A. Kilbas, R. K. Saxena, M. Saigo and J. J. Trujillo, Generalized Wright function as the H-function, in A. A. Kilbas and S. V. Rogosin (Eds.), Analytic Methods of Analysis and Differential Equations, AMADE 2003, Camb. Sci. Publ., Cambridge, 2006, 117–131.

S. D. Lin and H. M. Srivastava, Some families of the Hurwitz–Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput., 154 (2004), 725–733.

A. P. Prudnikov, Yu. A.Brychkov and O. I. Marichev, Integrals and Series, Volume 3, More Special Functions, Gordon and Breach, New York, 1990.

H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.

H. M. Srivastava, D. Jankov, T. K. Pog´any and R. K. Saxena, Two–sided inequalities for the extended Hurwitz–Lerch zeta function, Comput. Math. Appl., 62 (1) (2011), 516–522.

H. M. Srivastava, R. K. Saxena, T. K. Pog´any and R. Saxena, Integral and computational representations of the extended Hurwitz–Lerch Zeta function, Integral Transforms Spec. Funct., 22 (7) (2011), 487–506.

Downloads

Published

07.06.2024

How to Cite

Saxena, R. K., & Pogány, T. K. (2024). Analytic Continuation of the Extended Hurwitz-Lerch Zeta Function. Sarajevo Journal of Mathematics, 9(2), 159–167. https://doi.org/10.5644/SJM.09.2.01

Issue

Section

Articles