Gaps in the Pairs (Border Rank, Symmetric Rank) for Symmetric Tensors
DOI:
https://doi.org/10.5644/SJM.09.2.02Keywords:
Symmetric tensor rank, border rank, homogeneous polynomial, cactus rankAbstract
Fix integers $m \ge 2$, $s\ge 5$ and $d\ge 2s+2$. Here we describe the possible symmetric tensor ranks $\le 2d+s-7$ of all symmetric tensors (or homogeneous degree $d$ polynomials) in $m+1$ variables with border rank $s$.
2010 Mathematics Subject Classification. 14N05, 15A69, 15A21
Downloads
References
E. Ballico and A. Bernardi, Stratification of the fourth secant variety of Veronese variety via the symmetric rank, Adv. Pure Appl. Math., 4 (2) (2013), 215–250; DOI: 10.1515/apam-2013-0015
E. Ballico and A. Bernardi, A partial stratification of secant varieties of Veronese varieties via curvilinear subschemes, arXiv:1010.3546v3, Sarajevo J. Math., 8 (20), (2012), 33–52.
E. Ballico and A. Bernardi, Decomposition of homogeneous polynomials with low rank, Math. Z., 271 (2012), 1141–1149; DOI 10.1007/s00209-011-0907-6.
A. Bernardi and A. Gimigliano, M. Id`a, Computing symmetric rank for symmetric tensors, J. Symb. Comput., 46 (2011), 34–55.
A. Bernardi and K. Ranestad, The cactus rank of cubic forms, J. Symb. Comput., 50 (2013) 291–297. DOI: 10.1016/j.jsc.2012.08.001
J. Brachat, P. Comon, B. Mourrain and E. P. Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl., 433 (11–12) (2010), 1851–1872.
W. Buczy´nska and J. Buczy´nski, Secant varieties to high degree veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, arXiv:-1012.3562v4 [math.AG], J. Algebr. Geom., (to appear).
J. Buczy´nski, A. Ginensky and J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, J. London Math. Soc., 88 (2) (2013), 1–24.
G. Comas and M. Seiguer, On the rank of a binary form, Found. Comp. Math., 11 (1) (2011), 65–78.
P. Comon, G. H. Golub, L.-H. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal., 30 (2008), 1254–1279.
P. Comon and B. Mourrain, Decomposition of Quantics in Sums of Powers of Linear Forms, Signal Processing, Elsevier 53, 2, 1996.
A. Couvreur, The dual minimum distance of arbitrary dimensional algebraic-geometric codes, J. Algebra, 350 (1) (2012), 84–107.
Ph. Ellia and Ch. Peskine, Groupes de points de $P^2$: caract`ere et position uniforme, Algebr. geom., (L’Aquila, 1988), 111–116, Lect. Notes Math., 1417, Springer, Berlin, 1990.
J. M. Landsberg, Tensors: Geometry and Applications. Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc., Providence, 2012.
J. M. Landsberg and Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math., 10, (3)(2010) 339–366.
L.H. Lim and V. De Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal., 30 (3) (2008), 1084–1127.