Inequalities for Convex Functions

Authors

  • Hajrudin Fejzić Department of Mathematics, California State University, San Bernardino, CA, U. S. A.
  • Fuad Živojević Sarajevo, Bosnia and Herzegovina

DOI:

https://doi.org/10.5644/SJM.09.2.04

Keywords:

Convex functions, inequalities

Abstract

We consider inequalities of the form $\sum _{i=0}^{m}a_{i}\varphi (b_{i})\geq 0,$ and we give necessary and sufficient conditions on the nodes $b_{0},b_{1},\ldots ,b_{m},$ and the weights $a_{i}$ for such an inequality to be true for every real convex function $\varphi.$ In the case the nodes are integers with $b_{0}$ the smallest of them, then $\sum_{i=0}^{m}a_{i}\varphi (b_{i})\geq 0$ if and only if $x^{-b_{0}}\sum_{i=0}^{m}a_{i}x^{b_{i}}/(x-1)^2$ is a polynomial with positive coefficients.

 

2010 Mathematics Subject Classification. Primary: 26A24.

Downloads

Download data is not yet available.

References

Z. Kadelburg, D. Djuki´c, M. Luki´c and I. Mati´c, Inequalities of Karamata, Schur and Muirhead and some applications, The Teaching of Mathematics, 8 (1) (2005), 31–45.

H. Fejzi´c, R. Svetic and C. E. Weil, Differentiation of n convex functions, Fundam. Math., 209 (2010), 9–25.

Downloads

Published

07.06.2024

How to Cite

Fejzić, H. ., & Živojević, F. (2024). Inequalities for Convex Functions. Sarajevo Journal of Mathematics, 9(2), 187–195. https://doi.org/10.5644/SJM.09.2.04

Issue

Section

Articles