Existence of Best Proximity Points: Global Optimal Approximate Solution
DOI:
https://doi.org/10.5644/SJM.09.2.08Keywords:
Optimal approximate solution, common best proximity point, common fixed point, proximally commuting mappings, proximally dominating mappingsAbstract
Given non-empty subsets $A$ and $B$ of a metric space, let $S: A \to B$ and $T: A \to B$ be non-self mappings. Taking into account the fact that, given any element $x$ in $A$, the distance between $x$ and $Sx,$ and the distance between $x$ and $Tx$ are at least $d(A, B),$ a common best proximity point theorem affirms global minimum of both functions $x \to d(x, Sx)$ and $x \to d(x, Tx)$ by imposing a common approximate solution of the equations $Sx = x$ and $T x = x$ to satisfy the constraint that $d(x, Sx) = d(x, T x) = d( A, B ).$ In this work we introduce a new notion of proximally dominating type mappings and derive a common best proximity point theorem for proximally commuting non-self mappings, thereby producing common optimal approximate solutions of certain simultaneous fixed point equations when there is no common solution. We furnish suitable examples to demonstrate the validity of the hypotheses of our results.
2010 Mathematics Subject Classification. 41A65, 46B20, 47H10
Downloads
References
M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal., 70 (10) (2009), 3665-3671, doi:10.1016/j.na.2008.07.022.
M.A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Anal., 70 (3), (2009), 1209-1216, doi:10.1016/j.na.2008.02.004.
M. A. Al-Thagafi and N. Shahzad, Best proximity sets and equilibrium pairs for a finite family of multimaps, Fixed Point Theory Appl., (2008), page 10, (Article ID 457069).
A. Anthony Eldred and P. L. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001-1006, doi:10.1016/j.jmaa.2005.10.081.
A. Anthony Eldred, V. A. Kirk and P. Veeramani, Proximinal normal structure and relatively nonexpanisve mappings, Studia Math., 171 (3) (2005), 283-293, doi:10.4064/sm171-3-5.
J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topol. Appl., 156 (18)(2009), 2942-2948, doi:10.1016/j. topol.2009.01.017.
S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math., 3 (1922), 133–181.
S. K. Chatterjea, Fixed point theorems, C.R. Acad. Bulgare Sci., 25 (1972), 727–730.
C. Di Bari, T. Suzuki and C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (11) (2008), 3790-3794, doi:10.1016/j.na.2007.10.014.
K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234-240, doi:10.1007/BF01110225.
G. E. Hardy and T. D. Rogers, A Generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16 (2) (1973), 201–206.
G. Jungck, Commuting mappings and fixed points, Am. Math. Mon., 83 (1976), 261-263.
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 10 (1968), 71–76.
S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl., 9 (2009), Article ID 197308.
W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Anal., 68 (8) (2008), 2216–2227, doi:10.1016/j.na.2007.01.057.
W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim., 24 (2003), 851–862, doi:10.1081/NFA120026380.
H. K. Nashine and C. L. Dewangan, An application of KKM-map principle to best proximity pair, Varahmihir J. Math. Sci., 6 (1) (2006), 49-55.
H. K. Nashine and C. L. Dewangan, Existence results on best proximity pair for multifunction, Afr. Diaspora J. Math., 5 (1) (2007), 71–81.
H. K. Nashine, Existence results on best proximity pair in metrizable topological vector spaces, Nonlinear Funct. Anal. Appl., 13 (4) (2008), 587–596.
H. K. Nashine, C. L. Dewangan and Z. D. Mitrovi´c, Best proximity pair theorem in metrizable topological vector spaces, Anal. Theory Appl., 26 (1) (2010), 59–68.
J. B. Prolla, Fixed point theorems for set valued mappings and existence of best approximations, Numer. Funct. Anal. Optim., 5 (1982), 449–455.
S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62 (1978), 104-113, doi:10.1016/0022-247X(78)90222-6.
S. Sadiq Basha and P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math. (Szeged), 63 (1997), 289–300.
S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103 (2000), 119–129, doi:10.1006/jath.1999.3415.
S. Sadiq Basha, P. Veeramani and D. V. Pai, Best proximity pair theorems, Indian J. Pure Appl. Math., 32 (2001), 1237–1246.
S. Sadiq Basha, Best proximity points: global optimal approximate solution, J. Glob. Optim., (2010), doi:10.1007/s10898-009-9521-0.
S. Sadiq Basha, Extensions of Banach’s contraction principle, Numer. Funct. Anal. Optim., 31 (2010), 569–576, doi:10.1080/ 01630563.2010.485713.
S. Sadiq Basha, Common best proximity points: global minimization of multi-objective functions, J. Glob. Optim., DOI 10.1007/s10898-011-9760-8.
S. Sadiq Basha, Common best proximity points: global minimal solutions, J. Glob. Optim., DOI 10.1007/s11750-011-0171-2.
V. Sankar Raj and P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol., 10 (1) (2009), 21–28.
V. M. Sehgal and S. P. Singh, A generalization to multifunctions of Fan’s best approximation theorem, Proc. Am. Math. Soc., 102 (1988), 534–537.
V. M. Sehgal and S. P. Singh, A theorem on best approximations, Numer. Funct. Anal. Optim., 10 (1989), 181-184, doi:10.1080/ 01630568908816298.
P. S. Srinivasan, Best proximity pair theorems, Acta Sci. Math. (Szeged), 67 (2001), 421–429.
V. Vetrivel, P. Veeramani and P. Bhattacharyya, Some extensions of Fan’s best approximation theorem, Numer. Funct. Anal. Optim., 13 (1992), 397–402, doi:10.1080/01630569208816486.
K. Wlodarczyk, R. Plebaniak and A. Banach, Best proximity points for cyclic and noncyclic set-valued relatively quasiasymptotic contractions in uniform spaces, Nonlinear Anal., 70 (9) (2009), 3332–3341, doi:10.1016/j.na.2008.04.037.
K. Wlodarczyk, R. Plebaniak and A. Banach, Erratum to: best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces, Nonlinear Anal., 71 (2009), 3585–3586, [Nonlinear Anal., 70 (2009), 3332–3341 ], doi:10.1016/j.na.2008.11.020.
K. Wlodarczyk, R. Plebaniak and C. Obczynski, Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasiasymptotic contractions in cone uniform spaces, Nonlinear Anal. 72 (2010), 794–805. doi:10.1016/j.na.2009.07.024.