Hypercyclic and Topologically Mixing Properties of Abstract Time-Fractional Equations With Discrete Shifts
DOI:
https://doi.org/10.5644/SJM.09.2.10Keywords:
Regularized resolvent families, abstract time-fractional equations, hypercyclicity, topologically mixing propertyAbstract
The most valuable theoretical results about hypercyclic and topologically mixing properties of some special subclasses of the abstract time-fractional equations of the following form:
\begin{align}\label{FDEab1} & {\mathbf D}_{t}^{\alpha_{n}}u(t)+ A_{n-1}{\mathbf
D}_{t}^{\alpha_{n-1}}u(t)+\cdot \cdot \cdot + A_{1}{\mathbf
D}_{t}^{\alpha_{1}}u(t)= A_{0}{\mathbf D}_{t}^{\alpha}u(t),
\ t > 0, \notag\\
& u^{(k)}(0)=u_k,\ k=0,\cdot \cdot \cdot, \lceil \alpha_{n} \rceil
-1.
\end{align}
where $n\in {\mathbb N}\setminus \{1\},$ $A_{0},A_{1},\cdot \cdot \cdot ,A_{n-1}$ are closed linear operators acting on a separable infinite-dimensional complex Banach space $E,$ $0 \leq \alpha_{1}<\cdot \cdot \cdot<\alpha_{n},$ $0\leq \alpha<\alpha_{n},$ and ${\mathbf D}_{t}^{\alpha}$ denotes the Caputo fractional derivative of order $\alpha$ (\cite{bajlekova}), have been recently clarified in \cite{hf}-\cite{icdea}. In this paper, we continue the analysis contained in \cite{hf}-\cite{icdea} by assuming that, for every $j\in {\mathbb N}_{n-1},$ the operator $A_{j}$ is a certain function of unilateral backward shifts acting on weighted $l^{1}({\mathbb C})$-spaces.
2010 Mathematics Subject Classification. 47A16, 26D33, 47D06.
Downloads
References
E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, PhD Thesis, Eindhoven University of Technology, Eindhoven, 2001.
S.-J. Chang and C.-C. Chen, Topologically mixing for cosine operator functions generated by shifts, Topology Appl., 160 (2013), 382–386.
J. A. Conejero and E. Mangino, Hypercyclic semigroups generated by OrnsteinUhlenbeck operators, Mediterr. J. Math., 7 (2010), 101–109.
W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynam. Systems, 17 (1997), 1–27.
R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Mathematics 1570, Springer, New York, 1994.
N. S. Feldman, Hypercyclicity and supercyclicity for invertible bilateral weighted shifts, Proc. Amer. Math. Soc., 131 (2003), 479–485.
F. Martinez-Gim´enez, P. Oprocha and A. Peris, Distributional chaos for backward shifts, J. Math. Anal. Appl., 351 (2009), 607–615.
K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer-Verlag, London, 2011.
L. Ji and A. Weber, Dynamics of the heat semigroup on symmetric spaces, Ergodic Theory Dynam. Systems, 30 (2010), 457–468.
M. Kosti´c, Generalized Semigroups and Cosine Functions, Mathematical Institute Belgrade, 2011.
M. Kosti´c, Abstract Volterra equations in locally convex spaces, Science China Math., 55 (2012), 1797–1825.
M. Kosti´c, Hypercyclicity and topologically mixing property for abstract time-fractional equations, Dyn. Syst., 27 (2012), 213–221.
M. Kosti´c, Hypercyclic and topologically mixing properties of certain classes of abstract time-fractional equations, Springer Proceedings in Mathematics, Discrete dynamical systems and applications, edited by Lluis Alseda, J. Cushing, S. Elaydi and
A. Pinto, forthcoming paper (2013).
M. Kosti´c, Hypercyclic and chaotic integrated C-cosine functions, Filomat, 26 (2012), 1–44.
M. Kosti´c, C.-G. Li and M. Li, On a class of abstract time-fractional equations on locally convex spaces, Abstr. Appl. Anal., Volume 2012, Article ID 131652, 41 pages.
M. Kosti´c, C.-G. Li, M. Li and S. Piskarev, On a class of time-fractional differential equations, Fract. Calc. Appl. Anal., 27 (2012), 639–668.
I. V. Proskuryakov, Problems in Linear Algebra, Savremena administracija, Beograd, 1988 (in serbian).
J. Pr¨uss, Evolutionary Integral Equations and Applications, Birkh¨auser-Verlag, Basel, 1993.
H. R. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347 (1995), 993–1004.
H. R. Salas, Supercyclicity and weighted shifts, Studia Math., 135 (1999), 55–74.
S. Shkarin, The Kitai criterion and backwards shifts, Proc. Amer. Math. Soc., 136 (2008), 1659–1670.
T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Springer-Verlag, Berlin, 1998.