Variations on A-Browder-Type Theorems
DOI:
https://doi.org/10.5644/SJM.09.2.11Keywords:
Essential semi-B-Fredholm spectrum, a-Weyl's theorem, a-Browder's theorem, property $(SBw)$Abstract
We introduce and we study the new spectral properties $(SBw)$, $(SBaw)$, $(SBab)$ and $(SBb).$ Among other results, we show that if $T$ is a bounded linear operator acting on a Banach space $X$, then $T$ possesses property $(SBb)$ if and only if $T$ possesses property $(b)$ and $\Pi^0(T)=\Pi_a(T).$
2010 Mathematics Subject Classification. Primary 47A53, 47A10, 47A11.
Downloads
References
M. Amouch, M. Berkani, On the property (gw), Mediterr. J. Math., 3 (2008), 371–378.
M. Amouch, H. Zguitti, On the equivalence of Browder’s and generalized Browder’s theorem, Glasgow Math. J., 48 (2006), 179–185.
B. A. Barnes, Riesz points and Weyl’s theorem, Integral Equations Oper. Theory, 34 (1999), 187–196.
M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Oper. Theory, 34 (2) (1999), 244–249.
M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem. Proc. Amer. Math. Soc., 130 (6) (2002), 1717–1723.
M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl., 272 (2) (2002), 596–603.
M. Berkani and N. Castro and S. V. Djordjevi´c, Single valued extension property and generalized Weyl’s theorem, Math. Bohemica, 131 (1) (2006), 29–38.
M. Berkani, J.J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math., (Szeged), 69 (2003), 359–376.
M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasgow Math. J., 43 (2001), 457–465.
M. Berkani, M. Sarih and H. Zariouh, Browder-type Theorems and SVEP, Mediterr. J. Math., 8 (2011), 399–409.
M. Berkani, H. Zariouh, Extended Weyl type theorems, Math. Bohemica, 134 (4) (2009), 369–378.
M. Berkani, H. Zariouh, New extended Weyl type theorems, Mat. Vesnik, 62 (2) (2010), 145–154.
M. Berkani, H. Zariouh, Perturbation results for Weyl type theorems, Acta Math. Univ. Comenianae, 80 (2011), 119–132.
S. V. Djordjevi´c and Y. M. Han, Browder’s theorems and spectral continuity , Glasgow Math. J., 42 (2000), 479–486.
A. Gupta, N. Kashyap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl., 3 (2) (2011), 1–7.
K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press Oxford, (2000).
V. Rakoˇcevi´c, On a class of operators, Mat. Vesnik, 37 (1985), 423-426.
V. Rakoˇcevi´c, Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl., 34 (1989), 915–919.
H. Zariouh, H. Zguitti, Variations on Browder’s theorem, Acta Math. Univ. Comenianae, 81 (2) (2012), 255-264.