A Note on Lightlike Hypersurfaces of Semi-riemannian Space Form
DOI:
https://doi.org/10.5644/SJM.09.2.12Keywords:
Lightlike hypersurface, semi-Riemannian space form, screen conformal, conformal Killing distributionAbstract
In this paper, we mainly study lightlike hypersurfaces of semi-Riemannian space form. Our main result is a classification theorem of screen conformal lightlike hypersurfaces. Also, we obtain some geometric properties of lightlike hypersurfaces with a conformal Killing distribution.
2010 Mathematics Subject Classification. 53C25, 53C50.
Downloads
References
C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math., 11 (4) (2004), 421–442.
A. Bejancu and K. L. Duggal, Degenerate hypersurface of semi-Riemannian manifolds, Bull. Inst. Politehnie Iasi, 37 (1991), 13–22.
K. L. Duggal and A. Bejancu, Lightlike Submainfolds of Semi-Riemannian Mainfolds and Applications, Kluer Academic Publishers, Dordrecht, 1996.
K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submanifolds, Birkhauser Veralag AG, Basel, Boston, Berlin, 2010.
D. H. Jin, Lightlike hypersurface with totally umbilical screen distribution, J. Chungcheong Math. Soc., 22 (3) (2009), 409–415.
D. H. Jin, Geometry of half lightlike submanifolds of a semi-Riemannian space form with a semi-symmetric metric connection, J. Chungcheong Math. Soc., 24 (4) (2011), 769–780.
D. H. Jin and J. W. Lee, Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric metric connection, to appear in Mediterranean J. Math.
D. N. Kupeli, Singular semi-Riemnnian Geometry, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1996.
B. O’Neill, Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, 1983.