${\omega_{\mathcal{I}, \gamma}}$}-continuous functions and weakly {\boldmath${\omega_{\mathcal{I}, \gamma}}$}-continuous functions
DOI:
https://doi.org/10.5644/SJM.09.2.14Keywords:
$\omega_{\mathcal{I}, \gamma}$-sets, $\gamma$-open, $\omega_{\mathcal{I}, \gamma}$-spaces, $\omega_{\mathcal{I}, \gamma}$-connected spaces, $\omega_{\mathcal{I}, \gamma}$-compact spacesAbstract
Using the $\omega_{\mathcal{I}, \gamma}$\mbox{-}closed sets defined in \cite{carpintero}, we introduce the notions of $\omega_{\mathcal{I}, \gamma}$\mbox{-}continuous functions and weakly $\omega_{\mathcal{I}, \gamma}$\mbox{-}continuous functions. Characterizations and properties of this new class of functions are obtained and studied.
2010 Mathematics Subject Classification. 54C10, 54D10.
Downloads
References
A. V. Arhangel’skii, Bicompacta that satisfy the Suslin condition hereditarily. Tightness and free sequences, Dokl. Akad. Nauk SSR, 199 (1971), 1227–1230.
A. Csszr, $gamma$-compact spaces, Acta Math. Hungar., 87 (1–2) (2000), 99–107.
C. Carpintero, E. Rosas, M. Salas, J. Sanabria and L. Vsquez, Generalization of ω-closed sets via operators and ideals, Sarajevo J. Math., 9 (2) 2013, xx–xx.
A. A, El-Atik, A study of some types of mappings on topological spaces, Master’s Thesis, Faculty of Science, Tanta University, Tanta, Egypt 1997.
E. Ekici, S. Jafari, M. Caldas and T. Noiri, Weakly γ-continuous functions, Novi Sad J. Math., 38 (2) (2008), 47–56.
E. Ekici and S. Jafari S, On $omega^{*}$-closed sets and their topology, Acta Univ. Apulensis,
(2010), 175–184.
S. V. Fomin, Extension of topological spaces, Ann. Math., 44 (1943), 471–480.
S. Hussain and B. Ahmad B, γ-connected spaces, Int. J. Pure Appl. Math., 39 (1) (2007), 33–40.
S. Jafari, Some properties of quasi θ-continuous functions, Far East J. Math. Sci., 6 (5) (1998), 689–696.
S. Kasahara, Operation-compact spaces, Math. Japon.,24 (1979), 97–105.
K. Kuratowski, Topologies I, Warszawa, (1933).
N. Levine N, Decomposition of continuity in topological spaces, Am. Math. Mon., 68 (1961), 44–46.
B. M. Munshi and D. S. Bassan, Super continuous functions, Indian J. Pure Appl. Math., (1982), 229–236.
J. R. Munkres, 2002, Topologa, Prentice Hall, Madrid.
E. Rosas and J. Vielma, Operator-compact and operator connected spaces, Sci. Math., 1 (2) (1998), 1–6.
A. Srivastava and S. Gupta, On various properties of δ-compact spaces, Bull. Calcutta Math. Soc., 97 (3) (2005), 217-222.
N. V. Veliˇcko, H-closed topological spaces, Am. Math. Soc. Transl., 78 (1968), 103–118.
X. Wang, δ-connected spaces, (Chinese) Pure Appl. Math., 20 (3) (2004), 243–247.