A Discrete Weighted Montgomery Identity and Ostrowski Type Inequalities for Functions of Two Variables
DOI:
https://doi.org/10.5644/SJM.09.1.04Keywords:
Discrete Montgomery identity, discrete Ostrowski inequalityAbstract
A discrete analogue of the weighted Montgomery identity for functions of two variables is presented and used to obtain new discrete Ostrowski type inequalities.
2010 Mathematics Subject Classification. 26D15
Downloads
References
A. Agli´c Aljinovi´c, J. Peˇcari´c, Discrete weighted Montgomery identity and discrete Ostrowski type inequalities, Comp. Math. Appl., 48 (2004), 731–745.
A. Agli´c Aljinovi´c, J. Peˇcari´c, A discrete Euler identity, JIPAM, 5 (3) (2004), article 58.
A. AGLIC ALJINOVI ´ C AND J. PE ´ CARI ˇ C´
A. Ostrowski, Uber die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.
N. S. Barnett, S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. of Math., 27 (1) (2001), 1–10.
S. S. Dragomir, N. S. Barnett, P. Cerone; An Ostrowski type inequality for double integrals in terms of Lp-norms and applications in numerical integration, Revue D’analyse Numerique et de Theorie De L’Approximation, 32 (2) (2003), 161–169.
D. S. Mitrinovi´c, J. E. Peˇcari´c, and A. M. Fink, Inequalities for Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
J. Peˇcari´c, On the Cebyˇsev inequality ˇ , Bul. Inst. Politehn. Timisoara, 25 (39) (1980), 10–11.
J. Peˇcari´c, I. Peri´c, A. Vukeli´c, Montgomery’s identities for function of two variables, JMAA, 332 (1) (2007), 617–630.
D. S. Mitrinovi´c. J. E. Peˇcari´c, Monotone funkcije i nijhove nejednakosti, Nauˇcna kniga, Beograd 1990.
Graham, Knuth, Patashnik, Concrete Mathematics: A Foundation for Computer Science, Second edition, Addison-Wesley 1994.